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We investigate the interplay between the strong correlation and the spin-orbit coupling in the
Kane-Mele-Hubbard model and obtain the qualitative phase diagram via the variational cluster
approach. We identify, through an increase of the Hubbard U , the transition from the topological
band insulator to either the spin liquid phase or the easy-plane antiferromagnetic insulating phase,
depending on the strength of the spin-orbit coupling. A nontrivial evolution of the bulk bands in
the topological quantum phase transition is also demonstrated.
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Recently, a new field has emerged in condensed matter
physics, based on the realization that a spin-orbit interac-
tion (SOI) can lead to topologically insulating electronic
phases [1, 2]. A topological band insulator (TBI) has a
nontrivial band structure coming from the strong SOI.
Theoretical and experimental studies have found such
materials in both two (2D) [3–5] and three [6–10] dimen-
sions. TBI is characterized by a charge excitation gap in
the bulk, and gapless helical edge (or surface) states lying
inside the bulk gap protected by the time reversal symme-
try. As a new quantum state which is the Z2-graded topo-
logical distinction from other conventional insulators, it
has attracted great attention. Though great progress has
been achieved, the current researches mostly focus on the
weakly interacting systems. It has been proposed that
the topological insulator may also appear in the systems
with substantial electron correlations, such as 4d and 5d
transition metal oxides [11, 12]. It is also shown experi-
mentally that the electron interaction plays a crucial role
in determining the ground state of topological insulators
in the 2D limit [13]. Therefore, the effects of electron
correlations on the topological insulators present a new
challenge.

The correlation effects in topological insulators can be
studied either by interaction-driven topological insula-
tors [14–16] or by introducing interactions to a system
with a strong SOI [11, 17–19]. In this Letter, we in-
vestigate the model proposed by Kane and Mele [3] on
the honeycomb lattice for describing a 2D topological
insulator, and introduce the Hubbard interaction to an-
alyze the Mott physics. Recently, the Hubbard model
on the honeycomb lattice has been studied by Meng et

al [20] using the quantum Monte Carlo (QMC) method,
in which a spin liquid (SL) phase is found to exist be-
tween the semi-metallic (SM) phase and the antiferro-
magnetic (AF) Mott insulator (MI) phase. The mean
field analysis and QMC simulations for the Kane-Mele-
Hubbard (KMH) model reveal that the TBI phase is un-
stable against the magnetic ordering phase [17, 21, 22].
But the whole phase diagram, especially the transition
between the TBI and the MI, and the nature of the single-

particle excitations in the bulk and on the edges are still
open questions. As the existence of gapless edge states
is the direct manifestation of the topological nature, the
study of the single-particle excitation spectra is the nat-
ural way to investigate the phase transition between TBI
and MI. Here, we use the variational cluster approach
(VCA) [23], which takes into account exactly the effects
of short-range correlations by an exact diagonlization of
the separative clusters. We find a topological quantum
phase transition from TBI to MI or SL with increasing
U and this process shows a nontrivial evolution. Start-
ing from TBI, the SOI gap ∆SO closes first and then the
Mott gap opens up but without the gapless edge states
for increasing U , which is closely related to the topologi-
cal properties of the system. The closing process of ∆SO

is accompanied with a splitting of both the conduction
and valence bands. For the strong SOI, the state transit-
ing from TBI is the easy-plane AF Mott insulator. For
the weak coupling, a spin liquid phase emerges between
the TBI and the AF Mott insulator.
The Kane-Mele-Hubbard model is defined asH = H0+

HU , where H0 is the model proposed by Kane and Mele
on the honeycomb lattice as shown in Fig. 1(a) [3],

H0 = t
∑

〈ij〉σ

c†iσcjσ + iλ
∑

〈〈ij〉〉σσ′

νijc
†
iστ

z
σσ′cjσ′ , (1)

and HU the Hubbard interaction,

HU = U
∑

i

ni↑ni↓. (2)

Here, 〈i, j〉 and 〈〈ij〉〉 denote the nearest neighbor (NN)
and the next NN, respectively. λ is the SOI constant and
τ the Pauli matrices. νij = +1(−1) if the electron makes
a left(right) turn to get to the next NN site. Others
are in standard notation. We notice that the model can
decouple into two independent Hamiltonians for the up
and down spins and each is odd under time reversal. So,
it is in the integer quantum Hall (IQH) class.
VCA is a cluster method of the self-energy functional

approach [23]. It has been successfully applied to, for in-
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FIG. 1: (a) 6-site cluster tiling (dashed lines) on honeycomb
lattice used for the calculations of bulk properties. A and
B denote the two inequivalent sites, a1 and a2 the lattice
unit vectors. (b) First Brillouin zone. (c) An illustration
of tiling the ribbon used for the calculations of edge states.
The superlattices (rectangle with solid lines ) are arranged
periodically along the x-direction. For illustration, we only
plot two clusters (separated by the dotted horizontal line) in
each superlattice, while in the calculations eight clusters are
included.

stance, the study of competing phases in high-Tc super-
conductors [24, 25]. Despite the considerable finite-size
errors, VCA can predict the qualitatively correct trend
for the phase diagram [26]. In VCA, the lattice is tiled
into superlattice of clusters and the reference system is
made up of the decoupled clusters. The single-particle
parameters (denoted by t

′) of the reference system are
optimized according to the variational principle. And
one can add any Weiss field to study the symmetry bro-
ken phases. For the self-energy parameterized as Σ′(t′),
we have the grand potential:

Ω[Σ′(t′)] = Ω′(t′) + Tr ln[−(G−1
0 −Σ

′(t′))−1]

− Tr ln[−G
′(t′)], (3)

where Ω′(t′) and G
′(t′) are the grand potential and

Green’s function of the reference system, G0 is the
free Green’s function without interactions. The phys-
ical self-energy Σ is given by the stationary point
∂Ω[Σ′(t′)]/∂t′ = 0.
In our calculations, Σ′(t′) is determined by Σ

′(t′) =
G

−1
0 − G

−1(t′) and the lattice Green’s function G(t′)
is calculated via the cluster perturbation theory [27].
We first calculate G

′(t′) of each cluster by the exact
diagonalization method and then get G(t′) by treat-
ing the intercluster hopping V perturbatively, namely
G(k, ω) = G

′(k, ω)[1 − V(k)G′(k, ω)]−1 written in the
momentum space. Where the matrix V is given by
Vµν(k) =

∑

R
V 0R
µν eik·R with R the superlattice index.
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FIG. 2: (color online) Qualitative phase diagram of KMH
model. SM, TBI, SL and AF insulator denote the semi-metal,
topological band insulator, spin liquid and antiferromagnetic
insulator, respectively. Above the dashed line in the AF in-
sulator phase, the z-term of the AF order disappears.

V 0R
µν contains all hopping terms between two clusters at 0

and R, µ and ν denote different sites and spins in the two
clusters. For the calculation of bulk states, each cluster
consists of a hexagon (see Fig. 1(a)). For the calcula-
tion of edge states, we consider a strip geometry as illus-
trated in Fig.1(c). In order to completely tiling the strip,
a 12-site cluster is used. In realistic calculations, eight
clusters are included in the y-direction to form a super-
cluster and the superclusters are arranged periodically in
the x-direction. For illustration, we only show schemati-
cally two superclusters in the y-direction in Fig.1(c). We
have checked the results for ribbons with different widths
and with different cluster sizes in the calculation of edge
states, and find no obvious quantitative changes.

To test the existence of the possible AF order,
we will include the following Weiss field, Hα

AF =

hα
AF

∑

i(−1)ηic†iστ
α
σσ′c

†
iσ′ , where ηi = 0 or 1, when i ∈ A

or B. In the absence of the SOI, the spin sector has a
SU(2) symmetry. So, we have hz

AF = hx,y
AF . This relation

is broken when the SOI is turned on. In this case, we
will calculate the grand potential Ω(hAF ) as a function
of hz

AF and hx
AF , respectively.

Our main results on the interplay between the Hub-
bard interaction and the SOI are summarized in the U−λ
phase diagram [Fig. 2]. Let us first discuss the λ = 0 line.
In VCA, the existence of the AF order can be determined
by the hα

AF dependence of the grand potential Ω(hAF ).
Fig. 3(a) presents the results for different U . For weak
U , such as U = 2t and 4t, Ω(hAF ) shows a monotonic
increase with hz

AF (hz
AF = hx

AF in this case), indicating
that no AF order forms in the system. However, for a
large U such as U ≥ 6t, a minimum appears at finite
hz
AF and this minimum moves to lower hz

AF values with
increase of U . Therefore, we can infer that an AF or-
der exists for a large U as expected. Interestingly, we
find that an obvious Mott gap has opened up around the
Fermi energy in the density of states at U = 4t [Fig.3(b)].
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FIG. 3: (color online) (a) Ω as a function of hAF for various
values of U at λ = 0. (b) The density of states for U = 4 and
λ = 0. (c) and (d): Ω vs hAF at λ = 0.2t along the z and
x-directions, respectively.

This paramagnetic insulating phase is identified as the SL
phase as also been found recently by Meng et al using
the QMC simulation [20]. Therefore, the system will un-
dergo phase transitions from the SM to SL and then to
AF Mott insulator with U . Thus, we can reproduce the
QMC simulation results calculated for λ = 0 [20].

When turning on the SOI, we find that the SL phase
maintains for a range of SOI up to λ = 0.125t. On the
other hand, the AF order is not isotropic. As seen from
Figs. 3(c) and (d), no minimum is found at U = 4t for
λ = 0.2t in the hz

AF dependence, but it can be found in
the hx

AF dependence. It indicates that within a range of
U , the z-direction AF order is destroyed once the SOI is
present. For λ < 0.25t, when increasing U further, we
find the appearance of the z-term in the AF order even-
tually. However, for λ ≥ 0.25t, it has not been found
up to U = 10t. Thus, in the phase diagram we plot
the dashed-line separating the AF order with and with-
out the z-term. The easy-plane AF order is the result
of the interplay between the Hubbard interaction and
the SOI. As well known, the NN hopping will generate
an isotropic AF Heisenberg term H1 = J1

∑

〈ij〉 Si · Sj

with J1 = 4t2/U in the strong-coupling limit. Similarly,
the next NN SOI generates an anisotropic exchanging
term H2 = J2

∑

〈〈ij〉〉(−Sx
i S

x
j − Sy

i S
y
j + Sz

i S
z
j ) [17], with

J2 = 4λ2/U . Notice that the z term in H2 favors an-
tiparallel alignment of the spins on the next NN sites,
thus it will introduce a frustration to the NN AF corre-
lation expressed by H1. On the other hand, the xy term
in H2 favors a ferromagnetic alignment, so no frustration
is introduced. As a result, H2 coming from the SOI will
suppress the z-term of the AF order.

At another limit U = 0, a TBI is expected to occur
once the SOI is turned on [3]. The TBI is character-
ized by gapless edge states protected by the bulk gap
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FIG. 4: (color online) Intensity plot of A(k, ω) for single-
particle excitations in the bulk [Figs.(a), (c), (e) and (g)] and
in the ribbon with the zigzag edges [Figs.(b), (d), (f) and
(h)] at λ = 0.1t. The white dashed curves in Figs.(c), (e)
and (g) are the mean-field fits discussed in the text. From
the up to down figures, U = 0, 2t, 3t, 4t. The colors represent
the intensity of spectrum function as indicated by the color
scale at the bottom. The inset shows the U -dependence of
the renormalized velocity of edge states at λ = 0.1t and 0.2t.

opened by the SOI. The spectral function of single par-
ticles is given by A(k, ω) = −2ImG(k, ω)/π. The re-
sults for several U at λ = 0.1t are presented in Fig. 4,
where the bulk bands are plotted along the lines shown
in Fig. 1(b) and the edge states are calculated from a
ribbon with the zigzag edges [Fig.1(c)]. For U = 0, one
can see that a bulk gap opens resulting from the SOI
[Fig. 4(a)]. At the meantime, clear gapless edge states
with sizeable spectral weights emerge [Fig. 4(b)]. These
results reproduce perfectly the characters of a TBI [3].
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Turning on the Hubbard interaction U , we find that the
bulk gap is reduced firstly and the edge states are stable
against a weak U , as shown in Figs.4(c) to (f). When
U is increased further, the bulk gap closes and the edge
states disappear simultaneously. After that, a bulk gap
with the character of the Mott gap occurs and no edge
states reemerge anymore, as shown in Figs. 4(g) and (h).
Thus, we determine the phase boundary where the TBI
disappears by a criteria that the bulk gap closes and the
edge states disappear. Combining the above results, we
conclude that the TBI phase will make transition to the
SL phase when λ ≤ 0.125t and to the easy-xy plane AF
phase for λ > 0.125t, as presented in the phase diagram
of Fig. 2.
According to the bulk-boundary correspondence [1],

the existence of gapless edge states depends on the topo-
logical class of the bulk band structure. The transition
from TBI (topologically nontrivial state) to MI (toplogi-
cally trivial state) must undergo a gap closing process in
the bulk. As far as we know, this process is demonstrated
clearly for the first time by a systematic numerical cal-
culation presented here.
A first attempt to understand the evolution of the

spectrums in the KMH model is to include the AF or-
der parameter mA = −mB = |〈ni↑ − ni↓〉| (A and B
denote the sublattice in Fig. 1(a)) [17]. This gives
rise to the mean field dispersion given by E(k) =
±
√

ε2(k) + (λ− Um/2)2, with ε(k) the bare dispersion.
When Um/2 = λ, the spin-orbit gap closes. Then
another gap Um/2 − λ with a character of the Mott
gap opens up with the further increase of U . How-
ever, the evolution shown in Fig. 4 exhibits a more
complex behavior, namely both the valence and con-
duction bands around K are split into two subbands.
Comparing the numerical results for different U and
λ, we note that the band splitting around K depends
on λ2/U . This is the exchange integral in H2 coming
from the second-order process of the spin-orbit inter-
action as described above. So, we rewrite H2 as [17]

H
(2)
λ = −(J2/2)

∑

〈〈ij〉〉(a
†
i↑aj↑ − a†i↓aj↓)(a

†
j↑ai↑ − a†j↓ai↓)

and choose another parameter χ = 〈a†i↑aj↑ − a†i↓aj↓〉. By

using mA and χ as adjustable parameters, we can give a
fit to the numerical results, which is plot as white dashed
lines in Fig. 4. This simple fit provides a possible un-
derstanding of the gap closing and reopening processes
in the bulk.
Finally, let us discuss the effect of electron correlations

on the edge states. As shown in the inset of Fig. 4, we
notice a visible reduction of the velocity in helical Dirac
fermions at the edge in the TBI phase. This renormaliza-
tion arising from the two-particle scattering between the
left and right moving modes due to electron correlations,

which is allowed by the time reversal symmetry [28, 29].

In summary, we have investigated the interplay be-
tween the Hubbard interaction and the spin-orbit cou-
pling in the Kane-Mele-Hubbard model with the varia-
tional cluster approach. We map a detail U −λ phase di-
agram, in which the topological band insulator, the spin
liquid, and the antiferromagnetic insulator are identified.
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