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We present a scheme for the deterministic generation of entangled photon pairs in a supercon-
ducting resonator array. The resonators form a Jaynes-Cummings Lattice via the coupling to super-
conducting qubits and the Kerr-like nonlinearity arises due to the coupling. We show that entangled
photons can be generated on-demand by applying spectroscopic techniques and exploiting the non-
linearity and symmetry in the resonators. The scheme is robust against small parameter spreads due
to fabrication errors. Our findings can be used as a key element for quantum information processing
in superconducting quantum circuits.

Recent progresses in superconducting quantum circuits
[1] have enabled intensive study of the quantum be-
havior of the microwave cavity modes in superconduct-
ing resonators [2]. Strong coupling between the cavity
modes and superconducting qubits has been experimen-
tally demonstrated in a number of systems [3]. Quan-
tum optical effects such as single photon manipulation
and nonlinear spectrum have been observed [4]. Given
their ultra-high quality factors, the superconducting res-
onators can be a powerful platform for quantum informa-
tion processing and quantum state engineering involving
microwave photons. Recently, the Kerr nonlinearity was
explored for the parametric amplification and squeezing
of the resonator modes [5, 6]. The generation of twin pho-
tons at different frequencies was studied via the pumping
of superconducting qubits [7]. Meanwhile, coupled cav-
ity arrays (CCA) can also be realized in superconducting
systems to study quantum many-body effects such as the
Mott insulator-to-superfluid transition [8].

One essential element for quantum information process-
ing using microwave photons is the entangled photon
source that can generate entangled photon pairs in a
deterministic way and to distribute the photons in the
circuits [9]. The entangled photons can be used to im-
plement quantum teleportation and quantum cryptogra-
phy and to test quantum mechanical principles such as
the Bell inequalities [10, 11]. Various systems and ap-
proaches were explored to generate entangled photons in
the past, including spontaneous parametric down conver-
sion (SPDC) in quantum optical systems [12], pumping
of bi-excitons and cavity-polaritons in semiconductors
[13], and most recently, using the atom-photon interface
in coupled cavities [14]. In those approaches, entangle-
ment generation is either a stochastic process or a direct
switching from the atomic to cavity states.

In this work, we present a novel approach for the de-
terministic generation of spatially-entangled or energy-
entangled photons in superconducting resonators con-
nected in a ring geometry. Microwave photons can tun-
nel between adjacent resonators via capacitive coupling.
Each resonator is coupled to a superconducting qubit to
form the Jaynes-Cummings (JC) Lattice, which can give
rise to the Kerr-like nonlinearity in the resonator modes

[15, 16]. By combining the nonlinearity, circuit symme-
try, and a spectroscopic technique, we show that entan-
gled photons can be generated with high fidelity in the
presence of resonator dissipation and qubit decoherence.
The nonlinearity and the symmetry are exploited to pre-
vent off-resonant transitions which would otherwise im-
pair the entanglement generation. This idea can be fur-
ther explored to generate novel quantum states involving
multiple photons and can also be applied to semiconduc-
tor micro-cavities.

The proposed circuit includes four superconducting res-
onators coupled in a ring geometry and each resonator
couples to a superconducting qubit, as is shown in Fig. 1.
The system forms a JC Lattice with the total Hamilto-

nian Ht =
∑

j(H
(j)
JC +H

(j)
c ) which includes the JC model

for each resonator-qubit system

H
(j)
JC = ~ω0a

†
jaj + (~ωz/2)σjz + ~g(a†jσj− + σj+aj) (1)

and the tunneling between adjacent sites H
(j)
c =

~J(a†jaj+1 + a†j+1aj ). Here, a†j (aj) is the creation (an-
nihilation) operator of the resonators, σjz , σj± are the
Pauli matrices for the qubits, ω0 is the resonator fre-
quency, ~g is the coupling between the resonator and
the qubit, and ~J is the tunneling matrix element be-
tween the resonators. The eigenstates of the JC Model

H
(j)
JC are polariton states containing excitations in both

the resonator and the qubit [2]. With a finite coupling
and a small detuning ∆ = ωz − ω0, the polariton spec-
trum demonstrates Kerr-like nonlinearity similar to the
onsite interaction in the Bose-Hubbard Model. In the
thermodynamic limit, the JC Lattice exhibits the Mott
insulator-to-superfluid phase transition [8, 17].

The nonlinearity and the symmetry in the JC Lattice
play an important role in the eigenenergy spectrum of the
resonator array [18]. The eigenstates can be labelled by

the total number of excitations N =
∑

j(a
†
jaj + σj+σj−)

which is a good quantum number with [N, Ht] = 0. In
Fig. 2, the spectra for the low-lying eigenstates at the
strong-coupling limit g ≫ J and ∆ = 0 are shown. At
J = 0 without the tunneling, the eigenstates are prod-
uct states of the polariton modes in a single JC Model
[18]. At finite (but weak) J , the tunneling Hamiltonian
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FIG. 1: (Color online) Schematic circuit for the resonator
array. Inside the dashed box: resonators where photons are
generated; outside the box: interface to outside circuits.

is treated as a perturbation. For N = 0, we have the
ground state |ψ0〉 = Πj |0 ↓〉j . For N = 1, the lowest
four states |ψ1,m〉 with 1 ≤ m ≤ 4 are superpositions

of the four lower polariton states L†
j,1|ψ0〉. The tun-

neling Hamiltonian lifts the degeneracy of these states
with energy splittings ~J . Other states for N = 1 are
the higher polariton modes T †

j,1|ψ0〉 which are separated
from the lowest states by an energy ∼ ~g. For N = 2,
the lowest six states |ψ2,m〉 for 1 ≤ m ≤ 6 are superpo-

sitions of the states L†
j,1L

†
k,1|ψ0〉 with j 6= k and contain

two excitations occupying different sites. The tunneling
Hamiltonian generates energy splittings of

√
2~J among

these states. All other states for N = 2 either involve
excitations in the higher polariton modes or involve two
excitations in the same site, such as |ψ2,m〉 = L†

j,2|ψ0〉 for
7 ≤ m ≤ 10, with an energy ∼ ~g above the lowest six
states.

Entangled photon pairs can be generated in the JC Lat-
tice by spectroscopic techniques in the strong-coupling
limit. The effective nonlinear interaction together with
the tunneling J lifts the degeneracy of the eigenstates
and makes it possible to generate novel quantum states
by applying microwave pulses with selected phases and
frequencies. Assume a monochromatic driving Hd =
~
∑4

j=1(ǫje
−iωdta†j + ǫ∗je

iωdtaj) being applied to the res-
onators with the amplitudes ǫj and frequency ωd. This
pulse can generate transitions between eigenstates differ-
ing by one excitation number. When |ǫj | ≪ J, g, only
resonant transitions are important. Furthermore, we can
choose the relative phases and amplitudes of (ǫ1, ǫ2, ǫ3, ǫ4)
to design the allowed transitions. Consider the eigenstate
at ∆ = 0

|ψ2,3〉 = (L†
1,1L

†
3,1 − L†

2,1L
†
4,1)|ψ0〉/

√
2 (2)

which contains two excitations in the lower polariton
modes. This state is an EPR state with spatially-
entangled polaritons if we map the modes L1,1 and L4,1

to one polarization and the modes L2,1 and L3,1 to the
orthogonal polarization [12]. Below we construct a two-
pulse process to generate this state with high fidelity.
Initially, with ~ω0 ≫ kBT in the cryogenic environ-
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FIG. 2: (Color online) (a) Eigenenergies at J = ∆ = 0. The
degeneracies are labelled to the right. (b) Selected eigenstates
at finite J and ∆ = 0. Solid arrows are the designed tran-
sitions to generate |ψ2,3〉 and dashed arrows are off-resonant
transitions.

ment, the system is prepared to the ground state |ψ0〉 by
thermalization. The first pulse has uniform amplitudes
(ǫ1, ǫ2, ǫ3, ǫ4) = ǫ(1, 1, 1, 1) with ǫ ≪ J and the pumping
frequency ωd = ω0−g+J . This pulse induces a resonant
transition and hence a Rabi oscillation between |ψ0〉 and

the single-polariton eigenstate |ψ1,4〉 = (
∑

L†
j,1ψ0)/2, as

is indicated by the solid arrow in Fig. 2(b). After apply-
ing the pulse for a duration of π/2

√
2ǫ, the state is then

pumped to |ψ1,4〉. Although nonzero transition elements
exist between the state |ψ1,4〉 and some two-excitation
states such as |ψ2,2〉, these transitions are suppressed
by the off-resonances ∼ ~J when ǫ ≪ J . The second
pulse has opposite phases in the odd and the even sites
with (ǫ1, ǫ2, ǫ3, ǫ4) = ǫ(1,−1, 1,−1) and the pumping fre-
quency ωd = ω0 − g − J . Among the states |ψ2,m〉
for 1 ≤ m ≤ 6, the only nonzero transition element
induced by this pulse is 〈ψ2,3|Hd|ψ1,4〉 = ~ǫ. No cou-
pling is induced by this pulse between the states |ψ1,4〉
and |ψ0〉, and hence there is no transition back to the
ground state. Although nonzero transition elements ex-
ist between |ψ1,4〉 and other N = 2 states with higher
energy such as |ψ2,7〉 and between |ψ2,3〉 and some of the
N = 3 states, these transitions are again suppressed by
the off-resonances ∼ ~g. This pulse then induces a Rabi
oscillation between |ψ1,4〉 and |ψ2,3〉. After being applied
for a duration of π/2ǫ, this pulse generates the entangled
polariton state |ψ2,3〉.
The entangled polaritons can be transformed into entan-
gled photons by adiabatically switching the JC Lattice
to the “superfluid” regime. To achieve this, we slowly in-
crease the detuning to enter the dispersive regime with
∆ ≫ g. During this process, the lower polariton modes
adiabatically evolve into photon Fock states and the non-
linear interaction is effectively turned off. The entan-
gled state |ψ2,3〉, as an eigenstate, adiabatically evolves

into (a†1a
†
3 − a†2a

†
4)|ψ0〉/

√
2 which contains two spatially-

entangled photons. The adiabatic condition for reach-
ing this state requires that the increase of the qubit
energy satisfies dωz/dt ≪ 4g2, and hence the duration
of the adiabatic process satisfies δt ≫ (∆/4g2) [18].
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For our system, this condition can be readily met when
1/J < δt < 1/ǫ. Meanwhile, this state can also be writ-
ten in the momentum space. In the “superfluid” regime,
the single-particle eigenmodes are
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(3)

with energies ω0−2J for mode c2, ω0 for modes c1 and c3,
and ω0+2J for mode c4. It can be shown that the above
entangled state can be written as (c†1c

†
3−c†2c†4)ψ0/

√
2 and

is hence entangled in the momentum space as well. By
constructing coherent interface with outside circuits, the
entangled photons can be distributed to outside modes
and used in quantum information protocols.

The success of the proposed scheme relies on three crite-
ria: 1. the energy scales are well separated with ǫ≪ J, g;
2. the decoherence rates of the resonators κ and qubits
γq satisfy κ, γq ≪ ǫ; 3. the fabrication errors of the sys-
tem parameters can be compensated. For superconduct-
ing resonators [4, 19], strong coupling to qubits reaching
g/2π = 100MHz has been demonstrated. The tunneling
J can be obtained as capacitive coupling between adja-
cent resonators. For a superconducting coplanar waveg-
uide resonator, the voltage at position x is

Vj(x) =

√

~ω0

Cr

(a†j + aj) cos(2πx/L) (4)

with L being the length of the quasi-one-dimensional res-
onator. With a coupling capacitance C1 and resonator
capacitance Cr, we derive the coupling as [20]

C1Vj(L)Vj+1(0) = ~ω0
C1

Cr

(a†jaj+1 + a†j+1aj) (5)

which yields ~J = ~ω0(C1/Cr). The tunneling can be
adjusted in a large range by varying C1. For example,
ω0/2π = 10GHz, C1 = 10 fF, and C0 = 2 pF, we have
J/2π = 50MHz.

For finite driving amplitude ǫ, the off-resonant transitions
occur with the probability ∼ |~ǫ/δE|2 depending on the
off-resonance δE. For example, as is shown in Fig. 2,
the second pulse in this scheme induces transition be-
tween |ψ1,4〉 and |ψ2,7〉 with the probability ∼ |ǫ/0.6g|2.
Decreasing the driving amplitude can decrease the off-
resonant transitions. However, it also means longer pulse
duration and larger influence from the decoherence of
the resonators and qubits. The damping rate of the res-
onators can be as low as κ/2π ∼ 10 kHz given a quality
factor Q = 106 from recent experiments. The decoher-
ence rate of the qubits can be less than γq/2π ∼ 100 kHz.
At ∆ = 0, the decoherence rate of the polariton modes
is γp ∼ (κ + γq)/2 which can be less than 50 kHz. In

the dispersive regime, the decoherence rate is mostly de-
termined by the damping rate of the resonator. A driv-
ing amplitude of ǫ/2π = 5MHz can hence be adopted to
achieve high fidelity in the generation of entangled states.

To test this analysis, we numerically simulate this scheme
using a master equation approach and calculate the fi-
delity of the final density matrix: F = 〈ψ2,3|ρf |ψ2,3〉
with the target state |ψ2,3〉. For simplification, we use
the energy spectrum in Fig. 2(b) in our simulation, which
can be treated as a Bose-Hubbard Model for the lower-
polariton modes Lj,1 with damping rate γp. The effective
self-interaction is defined as U = (E2−−2E1−)/~ in terms
of the polariton energies [2] and U = (2−

√
2)g at ∆ = 0

when the entangled photons are generated. The other en-
ergy levels in Fig. 2(a) are omitted. This model, though
simplified, captures the dominant effects that reduce the
fidelity: the off-resonant transitions and damping. The
damping terms in the master equation are the standard
Lindblad form for modes Lj,1 [21]. In Fig. 3(a), the fi-
delity increases rapidly with U in the regime U < J .
For U > J , the fidelity stops increasing with U and
reaches a saturation value that does not depend strongly
on the driving amplitude. This agrees with our previous
analysis that the fidelity is limited by the off-resonance
δE ∼ min(~J, ~U) when γp ≪ ǫ. In Fig. 3(b), we find
that the fidelity increases with the driving amplitude ǫ at
first, but soon reaches a maximum and starts to decrease
as ǫ further increases. The initial increase of the fidelity
is due to the shortening of the pulse durations and hence
the lessening of the damping as ǫ increases. When ǫ fur-
ther increases pass the maximum, the off-resonant tran-
sitions gain a larger probability which eventually makes
the fidelity decrease. Our result shows that the fidelity
can exceed 0.9 at γp ∼ 100 kHz (γp/J ∼ 2× 10−3).

The parameters of the superconducting devices can
spread by a few percent due to fabrication errors. The
magnitude of the deviations in the resonator and qubit
frequencies can be comparable with the coupling and
the tunneling constants. Mostly coming from the in-
accuracies in the Josephson energy, the deviations in
qubit frequency can be avoided because the qubits are
made of SQUID loops instead of single junctions. The
qubit frequency as well as the detuning ∆ is hence tun-
able. Below we will show that by adjusting the detuning,
the effect of the deviations in the resonator frequency
and the deviations in the coupling constant on the en-
ergy of the L†

j,1|ψ0〉 modes can also be fully compen-

sated. The energy of the L†
j,1|ψ0〉 modes is E1−/~ =

ω0+∆/2−
√

∆2/4 + g2 [2]. Assuming the deviations δω0

in the resonator frequency and δg in coupling strength,
we find that the detuning needs to be

∆ = [(δg + g)2 − (δω0 + g)2]/(δω0 + g) (6)

in order to recover the energy E1−/~ = ω0 − g for the
lower polariton mode at ∆ = 0. This detuning is plotted
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FIG. 3: (a) Fidelity versus U/J at ǫ/J = 0.02, 0.04, 0.1 from
top to bottom and γp/J = 2 × 10

−4. (b) Fidelity versus ǫ/J
at γp/J = 0, 2 × 10

−4, 2 × 10
−3, 0.01 from top to bottom

at U/J = 2. (c) Solid (dashed) curves: detuning (effective
U/J) versus frequency errors δω0 at coupling errors δg =

0.1g, 0, −0.1g from top to bottom (from bottom to top). And
J/2π = 50MHz.

in Fig. 3(c) for various δω0 and δg. Note that the energy

of the T †
j,1|ψ0〉 modes can not be compensated simulta-

neously. As a result, the interaction U after the com-
pensation varies with δω0 and δg and can be decreased
for a negative δω0. To ensure a large U to protect the
fidelity of the pumping scheme, we can choose the lowest
resonator frequency in the array as the base frequency
ω0 so that δω0 > 0 for all other resonators.

In summary, we presented a scheme to generate entan-
gle photons in coupled superconducting resonators. Our
scheme explores the Kerr nonlinearity in a JC Lattice,
the circuit symmetry, and the spectroscopic techniques
to pump entangled photon pairs with high fidelity. We
numerically studied the robustness of this approach in
the presence of decoherence. The idea can also be easily
generalized to semiconductor system. When applied to
multiple resonators, this idea can shed new light in the
quantum engineering of novel states of microwave pho-
tons [22].
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