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Abstract

Deviations from continuum mechanics are always expectexdrastures scale down to nanoscale. We
investigate the validity of the plate idealization of uitran graphene by gaining insight into the response
of chemical bonds to bending deformations. In the monorlagebond orbital description of bending
reveals the full breakdown of the plate phenomenology. énrttulti-layer, objective molecular dynamics
simulations directly identify the validity-margin and thale of discreteness in the plate idealization. Our
result has implications for a broad class of phenomena wiierenono-layer easily curves, and for the

design of mass and force detection devices.
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The recent identification of graphene structures with higbree of crystallinity [1], extraor-
dinary high stitness and strength [2], calls for an understanding of theiegiplity of classical
continuum models in two dimensions (2D). In graphene thbaraatoms are disposed in a geo-
metric structure that closely resembles the basal planeslkfgraphite. Because the usual sur-
face relaxation fects [3] are absent, the in-plane elastic constants canféxead directly from
the well-studied [4] graphite. However, due to the disarets in the number of layefs, the
out-of-plane deformation modes, such as bending, are olvanaeomechanical nature. Plate ide-
alizations are often used for practical investigations]5,Unfortunately, a validity-check of the
plate phenomenology against the underlying microscogiabier is missing. On the theoretical
side, there are diculties associated with such endeavor, indeed. A simpldibgrdeformation
breaks the translational symmetry on which the accuratatgogamechanical (QM) methods are
relying on.

The well studied bulk graphite [4]fters a well-defined parameterization for the plate associ-
ated to anN-layer graphene: a Young’s modulus 002 TPa and a thickness bf= NZ,, where
Zo = 3.35 A is the interlayer distance. It is well known that this rebdoesn’t scale down to
the mono-layer [7-9]. Indeed, based on the observatiorathatdratic approximation to the ten-
sional and bending energy of the mono-layer accuratelyribescthe microscopic data [7], the
second-derivatives of these dependences are interpretde a&lastic in-plane $iness (C) and
bending stifthess (D) parameters of the plate. They serve as input forstiteopic continuum
relations D= Yh%/[12(1-v?)] and C = Yh. Herev is the Poisson ratio. Instead of giving the
expected values, this approach leads to an unrealistibgly Young’s modulus and a thickness
even smaller than the diameter of one carbon atom, Table &pita of the dificulties of defin-
ing the mono-layer thickness, the plate can be clearly patenized by the bending and tension
stiffnesses of graphene, and then used to model carbon nanosebddies under tension [8]. Be-
cause continuum mechanics is a phenomenology, the platelinas been long regarded as valid
and useful. However, recent experimentation [10] in maxyeet graphene challenges this view
since the measured out-of-plane resonant frequencie®afellowing the plate inverse-quadratic
scaling with length. This suggests the plate idealizatibthe mono-layer is limited in scope,
regardless of the way it is parameterized.

In this Letter we reveal that in the mono-layer, the sevexgadien from the parameterization
indicated by bulk originates in the breakdown of the platemdmenology. This is due to the

decoupling of bending and tensional deformations, as ecel# here by a bond orbital model



that relies on the extension into three dimensions ofdther orbital separability [11, 12]. In
the multi-layer, we witness the onset of the plate behavior reveal the role of discreteness by
direct microscopic simulations of the pure bending proca@$gse simulations are possible only
due to the recent theoretical advances involving objectieéecular dynamics (MD) [13] and its
coupling [14] with a realistic QM description of the intepatic interactions [density functional-
based tight-binding (DFTB) [15, 16] extended [17] to capttlre interlayer van der Waals (vdW)
binding].

In the first part, we focus on the mono-layer and capture teerdg&l physics behind the re-
sponse of chemical bonds to arbitrary bending. To descnilbdheory based on the concept of
bond orbitals [18], it is appropriate to begin with the wetidwn partitioning of the wavefunc-
tion of hexagonal planar graphene in terms of orthogegpfahybrids pointing toward the nearest-
neighbors, as well g, orbitals oriented perpendicular to the plane. Physictilystrongr- bonds
formed by the overlap of the nearest neighbgashybrids are responsible for the high in-plane
stiffness C value shown in Table 1. The weakonds formed by the, orbitals, sometimes re-
ferred to as non-bonding [18], couple instead to the plahaps. Under a pure bending distortion
of the mono-layer around an arbitrary axis, each carbon atuihits three nearest neighbors are no
longer planar but located in the corners of a pyramid. Thisypydalization is accounted for using
then-orbital axis vector (POAV) construction [11]. The geonmrtilting of oj-bonds (= 1, 2, 3)
by an angle, Figure 1(a), is accomplished in POAV by introducing a degrgp, atomic orbital
mixing into theo; network. Note that to first order in curvature/B), the three tilting angles as
well as bond lengths are common [12, 19]. Remarkably, tharmpidalization anglé is suticient
for describing the curvature-induced shiftgf hybridization. Under the orthogonality constraint,

ther-states acquire a smatorbital component
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which alters the inversion symmetry, Fig. 1(a). Parametelepends solely o, as [11, 12]
A= (1-3sirt6)/(2sirt6).

The POAV model does not capture themisalignments, Fig. 1(b). To rationalize the relative
orientation of theh,-orbital axis vector and thla‘,r-orbital axis vector located in neighbarit is
useful to note that in the bent layer, atoms are still eqemalRelying on this objective symmetry

and simple geometrical considerations, we obtained tleatditsional angleg; made by theh'



axis and the plane delineated by theando; axes satisfy to first order in/R
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Note also that inside the plane defined by the axes; @ndh,, Fig. 1(b), the angle made by the
projection of theh! axis with the normal direction to the; bond isé.

The POAV framework ffers an analytical approach to quantify the strain storedhénbient
mono-layer. As such we find that the strain energy is doméhlayethe adjustment of the hopping
integrals between the misalignbghybrids. Indeed, a geometrical decomposition of the dibita
into s- and p-atomic orbitals oriented parallel and perpendicular ® ititeratomic separation,
followed by a standard second-moment estimate of the bgrethergy, yields the bending strain

energy density (energy per atom divided by atomic &ga 2.71 A?)
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The V3 factor reflects the celebrated resonance bonding careft8]. More insight is ob-

i=1

tained in the above expression by introducing the interatd#amiltonian matrix elements de-
rived from Harrison’s universal scaling rule [18ks, = —4.99 eV, Vg, = 537 eV, Vpy =
8.39 eV,andV,, = —-2.38 eV. In the first term after the equal sign, the bond stresmjtiy
caused by thepresence i, cancels, within the error of the approximation, the in-plgeomet-
rical misalignment ofp, orbitals. Thus, we focus on the second term in whichghangles can
be further related t@ with the help of the sum rule (2). Using the pyramidalizatiazurvature

relation [12]60 = ac.c/4R, whereac.c = 1.42 A is the carbon-carbon equilibrium bond, one obtains
. 2
Ey ~ —3Vope = L6 €V, (4)

a microscopic expression in accord with the isotropic elastributes of the mono-layer. The good
agreement with the DFTB data indicates that strain is Igrdek to the torsional misalignment
between the neighboring POAVs.

What is important here is that the preceding bond orbitalysisreveals that the mono-layer
doesn't behave as a plate since it exhibits a pure bendinguzue without stretching and com-
pressing itsr-network. A bent plate would involve extension (compres¥ion the convex (con-

cave) sides, hence a coupling between D and C. This is whyahiereplate assumption based
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on the D= E, interpretation led to the unphysical Y ahdsalues showcased in the first line of
Table 1. The demonstrated continuum breakdown in the mayerlbrings a natural question:
What is the limit of applicability, in terms dfl, for the isotropic plate?

In the second part, we approach the above question by cgroyinDFTB simulations on a col-
lection of N-layers graphene withl = 2, ..., 9, stacked in the Bernal pattern. In the flat case, the
binding energy varied little witiN, from 9265 eV forN = 1 to 9297 eV forN = 5, and the inter-
layer spacingy was practically constant. Simulating a bending defornmgpioses a fundamental
difficulty. Even when bent along the armchair direction, Fig),2(l@e translational symmetry
along the principal curvature is removed. This makes stah@¥! calculations adopting transla-
tional symmetry intractable. However, the uniformly berttrmo-layer can be described with basic
repetition rules involving translation operations withand rotations of angl@ performed around
the bending axis. These operations are applied to a smaitiblg motif, such as thg=1,...,4
atoms of coordinateX;, Fig. 2(a). In each bent layer, the atomic coordinates ircéteindexed
by integers’, n are

Xien=nT + Rng, j=1..4 (5)

The bending angl€ of the rotational matriR can take an arbitrary value. In the linear bending
regime the structural paramet@randQ are common for every layer.

The employed microscopic simulation method - objective MB][- is crucial in this investi-
gation. Firstly, the introduced simplification in the numbé&atoms that are explicitly accounted
for, enables QM relaxation calculations that otherwise ldidne beyond reach. In a beRtlayer
graphene, eq. (5) represents the objective boundary ¢onsliimposed over theNl atoms, the
analogous of the standard periodic boundary conditiongnbdic MD. Thus, the method allows
simulating the large scale linear bending process of bothanandN-layered graphene by con-
sidering a minimum of M atoms. Secondly, the method allows us to impose pure bending
condition of stress where only a bending moment is beingiegppBecause under the objective
boundaries (5) the only constraint imposed on the simulatil is Q, the atomic positions are
free to move away or toward the rotation axisRo&ind thus to relieve in-plane strains [20].

Fig. 2(c) illustrates the bending response of the bondstetealong the principal curvature
direction, on which the bending load is transferred mé&atively. As expected, the equilibrium
1.42 A value is maintained only in the bent mono-layer. For idalfers, there is a splitting witN,
indicating that the beril-layer is stretched at some points and compressed at oithaggeement

with the plate phenomenology. We even noted that the miopscesponse can be described with
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the assistance of the invariant neutral surface, on thesigpside of which there is extension and
compression, Fig. 2(b). It is important to further note ttmbugh our boundary conditions (5),

the curvature of bent graphene is not imposed but is thetrefsthle relaxation [20]. The curvature

of the neutral surface becomes a good definition for the ¢turgaf the wholeN-layer.

E, maintains a quadratic dependence ¢R for all N. The accumulation of in-plane strain be-
comes obvious in the separation withof the strain energy curves (shown per atom) in Fig. 3(a).
The strain stored in the mono-layer appears negligibly kewan with respect to the bi-layer.
Studying the energy fferences between succesdN4ayered graphene at constariRL.one con-
cludes that there is an increased strain in the outermoshaedmost layers ad grows. We infer
that the main source of strain is the extension and compresdithe constituent layers and that

the D= E, interpretation is now justified. In mathematical termss tiieans

Eb:%D(;) 2(1- VZ)Z ©

&n is the in-plane strain stored in tin& layer. It was measured inside the objective domain, as the
change in length along the principal curvature with respedhe RQ length of the neutral line,

Fig. 2(a). Expressing, function ofRandZ,, gives [21]

2CZ2 |ZVi(n-3)% Neven CZ2N(N2-1)
1- Vz Z(N—l)/z n2 N odd B 12(1— Vz)

n=1

D~ (7)
ForN > 2, the D values predicted by eq. (7) usingZ5.6 eVA are in agreement with those
determined by second-order polynomial fits to the DFTB eyisrgependence on/R, Fig. 3(b)
and Table 1, confirming the plate phenomenology.

The Y andh values obtained by using the plate relations and the DFTaocnmlEg, Fig. 3(c)
and (d) converge quickly to the bulk. The small deviationsragéllN are a signature of discrete-
ness. Indeed, thdfect can be captured analytically by noting the resemblaheq.o(7) with the

standard thin-plate relation. One obtains
h=2Z,VN2-1 and Y=CN/h (8)

Thus, forN > 2 theN-layered graphene behaves with/211? error, like a plate, parameterized by
a C/Z, Young's modulus and BlZ, thickness. Interestinglyy = O obtained folN = 1 corresponds
to the membrane without thickness model [10]. Then,@he 0 value indicated by eq. (7) and

entered in Table 1, shows the inability of this membrane fiwa the QM POAV misalignment.
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In conclusion, our QM microscopic investigation revealsttine bending strain in mono-layer
and multi-layer graphene arises fronffdrent sources. The mono-layer can easily curve only by
introducing ar-orbital misalignment between adjacent pairs of carbomatdrl he lack otr-bond
participation proves the breakdown of the plate phenonugyolThis result has implications for
a broad class of phenomena, where the graphene mono-layleleby22], scrolls its edges [23],
ripples [24], and twists [25] in spite of its enormoudtstess. In multi-layer, the vdW forces are
mediating the load transfer between layers and bendindves@xtension or compression of the
o bonds. The plate phenomenology is now fulfilled. It was shbefore [26] that the electronic
structure also evolves witN, and approaches the graphite limit\at= 10. Here we obtained that
the bulk plate model can be applied evemat 3 with only a 6% error. Our result fully supports
the plate treatment applied to multi-layer graphene in grpents [5, 6, 27] involving out-of-plane

deformations without layer-sliding.
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FIG. 1: (color online) (a) Diagram showing theorbital in planar graphene and its change ihtaunder
bending. (b) Relative orientation of twg orbitals located on a carbon-carbon bond of bent grapheme. T
planes delineated by thg bonds in (a) and b, ando; axes in (b) were hatched. The upwards arrows are

the POAV.

FIG. 2: (color online) (a) A bent mono-layer in the armchairedtion is composed of primitive motifs
containing only four atoms. Neighboring motifs are gerestaiy translating and rotating this motif along
and around the OZ axis. (b) AX = 3 graphene bent wit® = 3.6 deg (¥R = 0.15 nnT?), as obtained by
objective MD relaxations. Dashed line is the neutral s@fgc) Length distribution of the carbon-carbon

bonds oriented along the principal curvature, wkes 0.2 deg.

FIG. 3: (color online) (a) DFTB bending strain energy as afiom of curvature squared, from mono-layer

to 5-layer graphene. (b) Second derivative of the bendimggees extracted from the microscopic data, and
D values (crosses) predicted by eq. (7). Plate model forngnag based on microscopic data: (c) Young's
modulus and (d) thickness (normalizedyas a function oN. The horizontal lines mark the/Zy andZ,

values.

TABLE I: The second derivative of the bending energy densiih curvature, as computed from DFTB
data, and the D values computed with eq. (7). The last twawadupresent the resulted plate model with a

bending stitnessE, , the in-plane sffness C= 26.6 eV/A2, and Poisson ratie = 0.24.

N E, (eV) D (eV) Y (TPa)h/N (A)

1 16 0 5.2 0.82
2 162.7 1584 1.40 2.98
3 660.3 6335 1.27 3.26
4 1,589.1 1,583.8 1.26 3.29
5

3,206.7 3,167.6 1.24 3.31
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