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We present a theoretical analysis of the inverse problem in self assembly. A particular scheme is
proposed for building an arbitrary desired nanostructure out of self-assembled building blocks (”oc-
topus” nanoparticles). The conditions for robust self-assembly of the target structure are identified.
This includes the minimal number of ”colors” needed to encode individual interparticle bonds, which
are to be implemented as pairs of complementary DNA sequences. As a part of this analysis, it
is demonstrated that a floppy network with thermal fluctuations, in certain range of coordination
numbers 〈Z〉, possesses entropic rigidity and can be formally described as a traditional elastic solid.
Onset of the entropic rigidity, 〈Z〉 = d+1, determines the minimal number of bond types per particle
needed to encode the desired structure. Thermodynamic considerations give additional conditions
for the implementation of this scheme.
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In recent years, there had been substantial progress in developing novel approaches to self assembly of micro-
and nanoscale structures. Important examples of these new ideas include combining the traditional nanoparticles
and colloids with organic and biological materials, e.g. DNA [1]-[5], and the use of building blocks with nontrivial
architecture such as patchy colloids [6]-[7]. Despite a number of spectacular achievements in these directions, there
are still many conceptual and technical limitations and the full potential of these new approaches is far from being
reached. While often being referred to as ”programmable” or ”smart’ self-assembly, this field remains primarily based
on heuristic approach rather than rational design.
In this letter, we discuss theoretically the inverse problem in self-assembly. In other words, we will be interested in

finding a set of constituents that self-assemble into a desired structure, rather than studying possible morphologies
of a given system. Our strategy will be to build a hierarchic self-assembly scheme. The first stage of this scenario
is to engineer elementary building blocks. They must be simple enough to be self-assembled and, on the other
hand, sophisticated enough to uniquely encode an arbitrary target structure. We will focus on the particular case of
nanoblocks whose size is of the order of 10-50nm, less than the persistence length of double-stranded DNA (dsDNA).
In order to come up with an appropriate architecture for the building blocks, it is useful to consider strengths

and weaknesses of the two major approaches mentioned above: the DNA-mediated self-assembly and the use of
patchy particles. In the first case, colloids or nanoparticles are functionalized with DNA containing a single stranded
segment (ssDNA) with a well defined sequence [1]-[5]. This gives each particle a code, i.e. makes it addressable. In
particular, it is possible to individually change the strength of interaction between particles of any two given types.
The obvious strength of this approach is the built-in tunability and great level of control. The weaknesses include a
somewhat modest range of phases that has been observed to date, and strong competition between the self-assembly
of ordered structure and amorphous aggregation. In the other approach, colloidal particles have small ”patches” that
are chemically different from the rest of the surface [6]-[7]. This results in anisotropic interparticle interactions, and
in principle, can encode the symmetry of the resulting self-assembled structure. This helps to diversify the phase
behavior, but it is normally not sufficient to suppress formation of metastable amorphous phases. In addition, there
is no general fabrication method for particles with an arbitrary prescribed arrangement of the patches.
It would be natural to combine the strengths of the two approaches by designing nanoparticles with DNA-decorated

patches, which could be used as a universal platform for self-assembly of a wider variety of nanostructures. In recent
years, we have theoretically studied several scenarios for self-assembly of such asymmetrical DNA-covered nanoblocks.
One possibility is to programmably self-assemble clusters of DNA-functionalized particles [8]. The other candidate
system is based on DNA-”caged” particles, as proposed in ref. [9] In that scheme, each nanoparticle is trapped in a
cage self-assembled from DNA, as shown in Figure 1 (a). As a result, ssDNA ”arms” are placed at the vertices of
the cage. In recent experimental work by Suzuki et. al. [10], another method has been utilized to attach two ssDNA
chains to a particle surface, at a predetermined separation between them. In Figure 1 (b),we illustrate how their
idea can be further generalized to attach a larger number of ssDNA arms at well defined positions on the particle
surface. First, one has to design a small DNA-based network whose triangular mesh elements made up by three
dsDNA segments. At each vertex, one ssDNA chain is terminated with a thiol group responsible for binding to a
golden nanoparticle. When the DNA mesh gets chemically attached to a particle, the vertices and the corresponding
ssDNA are positioned at well determined location with respect to each other. After denaturation of the dsDNA, either
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FIG. 1: Schematic representation of the proposed hierarchic slef-assembly scheme. (a) and (b) show the self-assembled building
blocks, ”DNA-caged” and ”octopus” nanoparticles, respectively. (c) illustrates the design procedure for an arbitrary target
structure.

by thermal melting or by using an appropriate fuel strand, one is expected to obtain an ”octopus” nanoparticle with
well defined set of ssDNA chains attached at the prescribed positions. It is important that no more than one DNA
mesh is bound to each particle. This can be controlled e.g. by incorporating long ssDNA ”tails” into the construct.
Such tails would create a barrier to further functionalization.
In this work, we will discuss the possibility of using the above building blocks for encoding and self-assembly of

an arbitrary nanostructure. Our design algorithm is illustrated on Figure 1 (c). First, assume that hard spherical
nanoparticles are already placed at the correct positions to form the desired structure. Second, we connect neighboring
particles with rod-like links of appropriate lengths. Physically, these links will be implemented as short dsDNA
molecules formed by hybridization of pairs of complementary ssDNA attached to the corresponding points on the
particles’ surfaces. In this way, we design a set of ”octopus” nanoblocks. The central question to be addressed below
is, what are the conditions for the robust self-assembly of the desired structure? In a narrow sense, it amounts to
whether the target structure is indeed the ground state of the system of such nanoblocks. However, for the practical
implementation of our approach, it is even more important that the desired structure is kinetically preferred over
other arrangements, such as random aggregates. We therefore focus primarily on kinetics of the self-assembly process.
Let us assume that a finite fragment containing N − 1 particles has already been assembled, and all inter-particle

connections are in perfect agreement with those in the desired structure. If a new particle is now added to the system,
it may or may not bind to the cluster in a correct manner. In particular, once the first link with the new particle is
made, there is a well defined set of other bonds to be made in order for the bigger N -particle cluster to be consistent
with the original design. All other bonds have to be avoided. Thus, there are two types defects possible: (i) the
new particle may miss a bond even though the corresponding neighbor is present in the cluster, (ii) the particle may
form a wrong bond. If the DNA hybridization is strong enough, the missing bond can only appear due to significant
deformation of the cluster with respect to its ideal geometry. In other words, if the structure is not rigid enough and
the fluctuations of particle positions and orientations is too strong , the new particle will have difficulty linking to all
of its binding sites. If ∆ is the typical length of DNA interparticle link, it sets the limit on the relative displacements
of neighboring particles in the structure, as well as on their rotations θi with respect to the ideal orientation:

〈

(uj − ui)
2
〉

. ∆2; a2i
〈

θ2i
〉

. ∆2, (1)

where ai is the i-th particle radius.
In order to avoid unwanted links, we will require that each individual bond of the same particle be coded with a

different pair of complementary DNA sequences (”color”). In the case when there are many particles of the same
type in the system (e.g. in crystals), there is also a chance that a single particle of type A will bind to the sites
corresponding to different particles of that type in the target structure. However, in order for this dislocation-like
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defect to occur, the typical particle displacements must be of the order of the spacial periodicity of the structure.
This sets a much weaker bound on the rigidity than Eq. (1), i.e. this type of defects can be essentially neglected.
As we have shown, rigidity of the target structure is the single most important condition for its robust self-assembly.

It is directly related to its connectivity that can be characterized by the coordination number Z (the number of bonds
per particle). The relationship between Z and rigidity of the structure has been an important problem in the context
of amorphous solids and granular materials [11]-[13]. In a mechanical sense, our system is expected to be rigid if the
number of constraint equations (one per rod-like DNA link) is equal or larger than the total number of degrees of
freedom (displacements and rotations of all particles): 〈Z〉N/2 ≥ (d+ d(d− 1)/2)N , for N particles in d-dimensional
space. Therefore, the network is completely rigid only if 〈Z〉 ≥ d(d + 1), which corresponds to coordination number
as large as 12 for d = 3. For Z < d(d+1) the system is known as a ”floppy network”: it has a number of zero modes
which allow for deformations without any energy change. Below, we demonstrate that in the presence of thermal
fluctuations, the system behaves as a rigid elastic solid even at much lower connectivity than 〈Z〉 = d(d + 1).
The geometric constraints that arise from binding the particle with rod-like dsDNA links can be formally expressed

in terms of particle displacements, ui, rotations θi and unit vectors representing the direction of each such rigid link,
n̂ij :

uj − ui − (aiθi + ajθj)× t̂ij = ∆ij

(

n̂ij − t̂ij
)

. (2)

Here indices i, j run over all directly linked particles, ai and ∆ij represent particle radius and the length of dsDNA
link, respectively, t̂ij is the unit vector along the interparticle bond in the reference state. The hard core repulsion be-

tween neighboring particles can be expressed as 2 (ai + aj)∆ij

(

n̂ij · t̂ij
)

> (uj − ui)
2, which in linear approximation

corresponds to

n̂ij · t̂ij > 0. (3)

For given values of vectors n̂ij , we obtain a set of dN 〈Z〉 /2 linear equations with respect to particle displacements
and rotations. Since the total number of these variables is N (d+ d(d− 1)/2) = Nd(d + 1)/2, there is a ”magic”
coordination number 〈Z〉 = Z∗ = d+ 1 that separates two qualitatively distinct regimes.
Consider the rigidity of a system with 〈Z〉 = Z∗ in more details. At this coordination number, a unique solution to

the constraint equation exists for any allowed orientations of the links, n̂ij . In our discussion, we exclude the case when
the set of equations has zero determinant, which would be a signature of non-optimal design of the bond network.
Since each local displacement uk (or rotation θk) significantly depends on orientations of a large number links, the
Central Limit Theorem (CLT) can be applied to find the statistical properties of these variables. In particular, their
statistics will be the same if we replace the right hand side of Eqs.(2) with random Gaussian variables ξij , while
preserving the first and second moments of the original distribution, i.e. 〈ξij〉 = ∆ij

(

〈n̂ij〉 − t̂ij
)

= −∆ij t̂ij/2;
〈

δξαijδξ
β
lm

〉

= ∆ij∆lm

[

δαβ (δilδjm − δimδjl) /3− tαijt
β
lm/4

]

≡ Λαβ
ijlm (for d = 3). This, in turn, is equivalent to Gibbs-

Boltzmann distribution exp (−Heff/kT ) with an effective Hamiltonian that has a quadratic form with respect to
variables ui, θi:

Heff =
kT

2

∑

ij,lm

(

wij −
∆ij t̂ij

2

)

· Λ̂−1
ijlm ·

(

wlm −
∆lmt̂lm

2

)

(4)

Here wij = uj − ui − (aiθi + ajθj)× t̂ij .
As a result of this transformation, the original system that was subject to rigid geometric constraints, has been

mapped onto a simple system composed of linear springs. The typical elastic moduli for this system are of the order
of kT

∆2a
, and the mean square displacements of the particles can be estimated as ∆2. A similar mapping can also

be constructed for systems with higher connectivity, Z∗ < 〈Z〉 < d (d+ 1). However, in this case the number of
constraint equations Eqs.(2) exceeds the number of variables u and θ in their left hand sides, which means that
unit vectors n̂ij are no longer independent. According to the CLT, the mean square fluctuations in the system are
approximately proportional to the number of statistically independent modes:

〈

(uj − ui)
2
〉

≃ a2i
〈

θ2i
〉

≃
d (d+ 1)− 〈Z〉

(d2 − 1)
∆2. (5)

As expected, thermal fluctuations vanish in the limit of a mechanically rigid network, Z = d (d+ 1). The rigidity of
the considered floppy networks with Z∗ < 〈Z〉 < d (d+ 1) is entropic in nature. Conceptually, it is similar to the
entropic elasticity of polymers.
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We now consider the other regime, 〈Z〉 < Z∗, in which the number of constraints is insufficient to determine the
positions and orientation of all the particles, for given values of n̂ij . Formally, this implies that the system has
unbound zero modes and therefore completely looses rigidity. However, when the second order terms are included
in inequalities representing the hard core constraints (3), the amplitudes of these ultra-soft modes become limited,

and their contribution to the fluctuations can be estimated as
〈

(uj − ui)
2
〉

soft
≃ a2i

〈

θ2i
〉

soft
≃ ((d+ 1)− 〈Z〉) a∆.

Here the pre-factor is proportional to the number of the ultra-soft modes per particle, and the scaling with ∆ comes
from the analysis of the nonlinear constraints. Unlike the previous case, the rigidity is not purely entropic in origin
but crucially depends on the presence of hard core repulsion in the system. The lowest coordination number Zmin at
which the system retains this kind of rigidity can be found by taking the limit of all ∆ij = 0. In this case, each bond
imposes d translational constraints and (d− 1) rotational ones. The number of constraints is equal to the number of

degrees of freedom at Zmin = d(d+1)
2d−1 , which is 12/5 for d = 3.

Thus, we found two distinct regimes: (i) entropic rigidity for Z∗ 6 〈Z〉 < d (d+ 1) where thermal fluctuations,
Eq. (5), are generally consistent with our rigidity criteria, Eq. (1); and (ii) hard-core stabilized floppy network,
Zmin 6 〈Z〉 < Z∗, with significantly stronger fluctuations due to the presence of ultra-soft modes.. Since these
fluctuations in a general case violate criteria Eq. (1), the proposed scheme in the latter regime becomes problematic.
We conclude that the minimal number of pairs of complementary DNA sequences (”colors”) needed for the robust
self-assembly of an arbitrary desired structure is

Nmin =
Z∗Ktypes

2
=

(d+ 1)Ktypes

2
, for Ktypes > 1. (6)

Here Ktypes is the number of distinct particle types for a given structure. The upper limit for Ktypes is the number of
particles per unit cell in a crystal, or the total number of particles in an aperiodic case. However, it can be significantly
lower if the structure has additional symmetries. Note that for crystals with a single particle per unit cell (Ktypes = 1),
the minimal coordination number that ensures connectivity of the system, and preserves equivalence of all particles
is Z = 2d (each bond corresponds to a primitive vector of the crystal). Therefore, Nmin = d for Ktypes = 1.
The above result is one of the central findings of our work. In order to determine additional conditions for successful

programmable self-assembly, we proceed with the discussion of its thermodynamics. For 〈Z〉 = Z∗, the chemical
potential of the structure (averaged over the particle types) can be calculated exactly, due to the match between the
number of degrees of freedon and that of constraints: µ̄ = −kT

〈

log
(

32π2a3i c0
)〉

+Z∗ 〈∆Gij (T )〉 /2. Here the averaging
〈〉 is performed over all particle and link types, the first logarithmic term represents the loss of translational and
orientational entropies, c0 = 1M is the standard reference concentration, , and ∆Gij is the hybridization free energy
of a DNA link. The latter can be expressed in terms of temperature and entropy of dsDNA denaturation, T ∗

ij and ∆Sij ,

respectively: ∆Gij (T ) = −kT log (c/c0) + ∆Sij

(

T − T ∗

ij (c)
)

. While this expression is valid for an arbitrary DNA
concentration c, it is convenient to choose c = C/Ktypes, where C is the total concentration of all particles. The self-
assembled structure is expected to melt when µ̄ exceeds the chemical potential of free particles, µfree = kT log (c/c0)
(we assume a symmetric mixture of all particle types). This gives the following melting temperature:

Tm = T
∗

− δT
〈log (48πφi)〉

2
. (7)

Here φi = 4πa3i c/3 is the volume fraction of type-i particle, T
∗

=
〈

T ∗

ij∆Sij

〉

/ 〈∆Sij〉 has the meaning of sequence-
averaged DNA melting point, and δT = kT/ 〈∆Sij〉 is the typical width of the DNA denaturation/hybridization
transition.
Our earlier discussion was based on the assumption that the structure grows in a sequential manner, one particle

at a time. This can be violated if there is a significant fraction of small clusters present in the system. Such
clusters normally form somewhat below the corresponding DNA hybridization temperature T ∗

ij , due to additional
loss of orientational entropy of the constituent particles. For instance, the dimers of particles i and j occur around

temperature T
(d)
ij = T ∗

ij +
(

log
[

∆ij

(

a−1
i + a−1

j

)

/4
]

− 1
)

kTij/∆Sij . The relative shift of this transition with respect
to T ∗

ij is of the order of its width, kTij/∆Sij ∼ δT . Therefore, to ensure that no significant amount of small cluster is
present during the self-assembly, one can require that (i) the volume fraction of each type of particles is reasonably
low, as implied by Eq. (7), and (ii) the distribution of denaturation temperatures for DNA sequences used, T ∗

ij is
narrow compared to δT :

φi ≪
1

48π
∼ 10−2; max

(

T ∗

ij

)

− T
∗

. δT (8)
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In summary, we have discussed theoretically the inverse problem in self-assembly. We proposed a design procedure
based on the use of ”octopus” nanoparticles, which themselves may be built by self-assembly. The conditions for this
hierarchic scheme to robustly produce the desired nanostructure can be condensed to Eqs. (6),(8). As a part of our
analysis, we obtained interesting results for floppy networks with thermal fluctuations. It was demonstrated that for
the average coordination number within certain range, Z∗ 6 〈Z〉 < d (d+ 1), the system possesses entropic rigidity
conceptually similar to entropic elasticity of polymers, and can be formally described as a traditional elastic solid.
For lower connectivity, 〈Z〉 < Z∗, the behavior of the network is qualitatively different: the thermal fluctuations are
dominated by ultra-soft modes, and the structure is stabilized only by hard core repulsion.
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