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We show that the Bogoliubov-de Gennes equations for nuclear ground-state wave functions sup-
port solutions in which the condensate has a mixture of spin-singlet and spin-triplet pairing. We
find that such mixed-spin condensates do not occur when there are equal numbers of neutrons and
protons, but only when there is an isospin imbalance. Using a phenomenological Hamiltonian, we
predict that such nuclei may occur in the physical region within the proton dripline. We also solve
the Bogoliubov-de Gennes equations with variable constraints on the spin-singlet and spin-triplet
pairing amplitudes. For nuclei that exhibit this new pairing behavior, the resulting energy surface
can be rather soft, suggesting that there may be low-lying excitations associated with the spin
mixing.

PACS numbers: 21.10.-k, 21.30.Fe, 21.60.Jz, 27.60.+j

Introduction. The usual pairing found in nuclei is
between identical nucleons in the spin-singlet channel.
Although the spin-triplet interaction is stronger, the
spin-orbit field tends to suppress pairing in the triplet
channel[1, 2]. However, spin-triplet pairing becomes fa-
vored in nuclei with equal numbers of neutrons N and
protons Z when the nucleon number is very large (prob-
ably beyond the proton dripline)[3]. In this work we
address nuclei with N 6= Z and find some surprising
results: a) the domain where spin-triplet pairing dom-
inates extends well off the N = Z line; b) the condensate
changes character smoothly between pure spin-triplet on
the N = Z line to pure spin-singlet at large neutron ex-
cess, c) the mixed-spin nuclei that we find extend below
the proton dripline and are thus relevant to experiment.

Context. The expectation that isospin-zero (T = 0)
neutron-proton pairing should exist comes from the fact
that the interaction in the spin-triplet (isospin-singlet)
channel, which binds the deuteron, is stronger than the
1S0 interaction that is largely responsible for ordinary
identical-particle spin-singlet pairing. It was suggested a
long time ago that neutron-proton pairing is important
near the N = Z line (see Refs. [4, 5] and works cited
therein, as well as Refs. [6, 7] for a discussion of the
experimental situation). A number of theoretical works
have examined the possibility that nuclei may contain a
T = 0 spin-triplet neutron-proton (‘deuteron-like’) con-
densate when N = Z, suggesting that states of high an-
gular momentum might favor T = 0 pairing [8–10]. The
possibility of mixed-spin condensation, T = 0 and T = 1,
has also been raised in Ref. [5, 11] for N = Z medium-
mass nuclei, although no mixed-spin ground states were
shown. In this Letter, we present our findings for the
existence of mixed-spin solutions to the Bogoliubov-de
Gennes equations for the ground-state of large but ac-
cessible nuclei off the N = Z line.

Hamiltonian. We use the same Hamiltonian here as
was used in Ref. [3]. It contains a one-body and a two-

body part represented in Fock space as:

Ĥ =
∑

i

〈i|Hsp|j〉a†iaj +
∑

i>j,k>l

〈ij|v|kl〉a†ia
†
jalak (1)

where i, j label orbitals in a spherical shell-model basis.
The one-body part Hsp is taken from the eigenstates of
a Wood-Saxon potential of standard form, containing a
kinetic energy, a potential well, and a spin-orbit term.
The two-body interaction is of contact form:

〈ij|v|kl〉 = 1
4 〈ij|(3vt+vs+(vt−vs)~σ·~σ′)δ(3)(~r−~r′)PL=0|kl〉.

(2)
where PL=0 projects onto the spherically symmetric part
of the pair wave function. This Hamiltonian is appro-
priate for systems with no nuclear deformation, accent-
ing the pairing condensates. There are two interaction
strengths, vt and vs, corresponding to spin-triplet and
spin-singlet, respectively. These were determined by fit-
ting to phenomenological shell-model Hamiltonians. The
interaction of Eq. 2 can generate 6 independent conden-
sates counting only spin and isospin quantum numbers.
We label these by an index α enumerated in Table I.

α 1 2 3 4 5 6

(S, Sz) (0,0) (0,0) (0,0) (1,1) (1,0) (1,-1)

(T, Tz) (1,1) (1,0) (1,-1) (0,0) (0,0) (0,0)

TABLE I: Spin-isospin channels for pairing condensates.

Finally, we note that the Coulomb interaction is omit-
ted in the above Hamiltonian. The main effect of this is
that the calculated nuclei are only physical within the
proton dripline. Nevertheless, the pairing phenomena
that can be elucidated beyond the proton dripline are in-
teresting on a purely theoretical level. Also, as we shall
show, the region where these effects may occur extends
into the physical region, below the proton dripline.
BdG theory. The Bogoliubov-de Gennes (BdG) theory

is defined by minimizing the Hamiltonian under Bogoli-
ubov tranformations of the Fock-space vacuum, subject
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to constraints such as the neutron and proton number
expectation values. In the notation of [12], the Bogoli-
ubov transformations are parameterized by the matrices
U and V giving the definition of the quasiparticle anni-
hilation operator in terms of the Fock-space annihilation
and creation operators, respectively. The key equations
in the theory are the formulas for ordinary and anoma-
lous densities, ρ = V ∗V t and κ = V ∗U t, respectively, and
the formula for the expection value of the Hamiltonian,

H00 = Tr(ερ+ 1
2Γρ− 1

2∆κ∗). (3)

As usual, the matrices Γ,∆ are defined through the
standard relations Γij =

∑

kl vikjlρlk and ∆ij =
1
2

∑

kl vijklκkl. Here, and in Eq. (4) below, superscripts
denote the number of quasiparticle creation and annihi-
lation operators.
Calculational procedure. Traditionally the minimiza-

tion is carried out using the BdG equations, which are ar-
rived at by setting the variational derivative of the energy
with respect to U and V to zero. (Actually the variation
must be constrained to preserve the unitarity of the Bo-
goliubov transformation. This introduces Lagrange mul-
tipliers that give the BdG equations their structure as
eigenvalue equations for the quasiparticle energies.) The
BdG equations are solved for some assumed density, and
the solution is used to update the density. This process is
iterated to self-consistency. However, to study the ener-
getics with different types of condensates it is necessary
to deal with many constraining fields and therefore thor-
oughly explore the space of allowed Bogoliubov transfor-
mations. Under these conditions, the BdG minimization
is easier to carry out by the gradient method [12], and we
take advantage of that method here. In taking the varia-
tional derivative of the Hamiltonian one makes use of the
generalized Thouless matrix Z, whose elements are inde-
pendent of each other. The gradients of the Hamiltonian
and the operators to be constrained can then be applied
to update a trial set of U, V matrices, using the steepest
descent or other numerical methods[13]. The change in
the expectation value of a one-body operator Q can be
expressed:

Q00
new = Q00

old − Tr(Q20Z) +O(Z2). (4)

A similar formula applies to the Hamiltonian, since its ex-
pectation value can be expressed in terms of one-body ex-
pectation values. To insure that the space of possible Bo-
goliubov transformations has been adequately explored,
we carry out the iteration process repeatedly starting
from U, V matrices obtained by transformations from the
vacuum or other states by Z transformations. We have
used the gradient method to solve the BdG equations
with 8 simultaneous constraining fields, 2 for the neutron
and proton particle numbers, and 6 for the pairing am-
plitudes corresponding to the 6 distinct channels of Table
I. To be more precise, the 6 constrained amplitudes are
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FIG. 1: (color online) Chart of nuclides with Z ≤ N for
neutron numbers from 50 to 75. Blank squares denote nu-
clei that exhibit practically no pairing (Ecorr < 0.5 MeV),
green squares signify the case where the pairing condensate is
mostly spin-singlet, red diamonds are used for the nuclei that
exhibit spin-triplet, while blue circles denote nuclei for which
the pairing is a mixture of spin-singlet and spin-triplet. The
blue dashed line is the proton-drip line from Ref. [14].

computed as κα = Tr(Pακ) where the matrices Pα are de-
fined in terms of the quantum numbers (ℓk, ℓzk, szk, tzk)
of the orbitals k as

Pα,ij =
√
2
(

(12 szi
1
2 szj |S(α)Sz(α)

)

× (5)

(

1
2 tzi

1
2 tzj |T (α)Tz(α)

)

(−)ℓi−ℓziδℓi,ℓjδℓzi,−ℓzj .

In the computation, even-A and odd-A nuclei are
distinguished by the number parity of the Bogoluibov
transformation[13]. For odd-A nuclei, there is a block
structure of the Hamiltonian and the odd number par-
ity is imposed on one of the blocks. Each block must be
tested to find the global energy minimum.
Results. A quantity that allows us to accurately gauge

the relative importance of the pairing condensates is the
correlation energy, Ecorr = E0 − E, where E0 is the en-
ergy of the ground state in the absence of a pairing con-
densate, i.e. the result of setting all κα to zero.
We have mapped out all nuclides with Z ≤ N for

neutron numbers from 50 to 75 and show the results in
Fig. 1. A few nuclei have very small correlation energies
(white in Fig. 1), while the majority of nuclei, above and
below the proton dripline, are spin-singlet (green squares
in Fig. 1). However, a group of nuclei with neutron
numbers roughly from 65 to 70 exhibit spin-triplet pair-
ing (red diamonds in Fig. 1), or as discussed below, a
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FIG. 2: (color online) Contour plots of the correlation energy in three different A = 132 nuclei as a function of the amplitudes
of selected spin-singlet and spin-triplet condensates. Left panel: 132

60 Nd, mainly spin-singlet pairing, as is common in most
nuclei studied to date; middle panel: 132

66 Dy, mainly spin-triplet pairing, similarly to what was introduced in Ref. [3]; right
panel: 132

64 Gd, mixed-spin pairing exemplifying a qualitatively new feature, namely the gradual crossover from spin-singlet to
spin-triplet pairing. The numbers show correlation energies in MeV. In all three cases, each peak is marked by an X.

crossover between the two kinds of pairing. The demarca-
tion between the three kinds of pairing is somewhat arbi-
trary, so we have chosen to call “mixed-spin paired” those
nuclei for which the spin-singlet amplitude is between one
and three quarters of the total pairing amplitude. Note
that the island of mixed-spin paired nuclei (blue circles
in Fig. 1) contains many nuclei that lie within the proton
dripline. Thus, the predicted mixed-spin pairing may be
relevant to experimental investigation.

In an attempt to understand how the pairing conden-
sate changes from from spin-singlet to spin-triplet, we
have examined in more detail some nuclei at mass number
A = 132. Here, the N = Z nucleus 132

66 Dy exhibits spin-
triplet pairing. Changing the neutron-proton asymmetry,
one reaches the region of ordinary spin-singlet pairing
when N − Z > 10. The nucleus (13260 Nd) is an example.
At the BdG minimum, the only nonzero anomalous den-
sities are the ones for α = 1, 3 and they have roughly
equal amplitudes. To see how the energy varies as the
condensate is changed, we constrain κα away from the
values at the minimum and examine the energy surface.
For a two-dimensional plot we take the x variable to be
the amplitude of the neutron-neutron condensate (κ1)
and the y variable the amplitude of the neutron-proton
condensate κ5. The amplitude of the proton-proton con-
densate κ3 is taken to be the same as κ1, all other con-
densates are set to zero. The resulting correlation energy
for 132

60 Nd is shown as a contour plot in the left panel of
Fig. 2. The peaks near (x, y) ≈ (±20, 0) correspond to
the unconstrained BdG minimum. The BdG energy does
not depend on the phase of the condensate, so the energy
surface is symmetric under reflections in both axes. The
pure uncorrelated ground state at the center of the graph
(black dot) defines the zero level for the condensation en-
ergy. Note that the contours are elongated in the vertical

direction, indicating that the energy surface is rather soft
with respect to forming a spin-triplet condensate.

The middle panel of Fig. 2 shows the energy surface for
132
66 Dy on the N = Z line. Here the peaks are at (x, y) ≈
(0,±22), i.e. the condensate is spin-triplet. Along the x-
axis there the spin-singlet condensatation energy reaches
a maximum near x = ±20, but it is only a saddle point
in the two-dimensional space.

We now ask how one condensate changes to the other
as N − Z is varied. One could imagine a sudden switch,
corresponding to a quantum phase transition, if the sad-
dle point in the middle panel of Fig. 2 became a peak
that grew to become the global maximum. This is not
what happens. Instead, the peak shifts position, moving
smoothly from one axis to the other. A typical case is
shown in Fig. 3, N −Z = 4, i.e. the nucleus 132

64 Gd. The
maxima are located at (x, y) ≈ (±11,±20), i.e. the con-
densate has a mixed-spin character. We have examined
the form of the pairing in the canonical basis and found
that the relationship between paired orbitals |i〉 and |̄i〉 is
|̄i〉 = τzT |i〉, where T is the time reversal operator and τz
is the Pauli isospin operator. This particular form gives
ordinary spin-singlet pairing in the absence of neutron-
proton mixing in the orbital |i〉, but has a spin-triplet
component when neutrons and protons are mixed.

Discussion. Trial computations we have performed
suggest that the phenomenon of mixed pairing depends
on the spin-orbit field in the nucleus. In the absence of
spin-orbit splitting, the singlet and triplet interactions
would be on an equal footing. There would be a sharp
transition at vs = vt, the SU(4) symmetry point, with
pure condensates of one type or the other away from
that point. Moreover, the smooth transition between
spin-singlet and spin-triplet pairing could not have been
anticipated from results such as those in Refs. [8, 9] on
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the behavior in 48Cr as a function of angular momentum.
These authors found that the states of different character
do not mix strongly and the character of the yrast state
just depends on which is lower in energy. Also, in Ref.
[15] the authors report that there is a phase transition as
a function of N − Z, with the change of character tak-
ing place suddenly. However, Ref. [10] on the high spin
states in 80Zr found a small degree of mixing. It is impor-
tant to note, however, that the spin-triplet condensates
considered in these references are those in channels α = 4
and 6 from our Table I. In fact, we only find a smooth
transition to spin-singlet pairing starting from α = 5, i.e.
spin-triplet with z-projection Sz = 0.

We now briefly mention some of the possible physical
consequences of the mixed pairing phase. One potential
consequence of spin-triplet pairing might be a reduced
pairing gap in the odd-even mass differences. In partic-
ular, it was found in Ref. [3] that some quasiparticle en-
ergies are close to zero, suggesting reduced pairing gaps.
To examine the pairing gaps we calculate the second dif-
ference of the correlation energies by the formula

∆(3)
o (n) = E(n)− 1

2 [E(n− 1) + E(n+ 1)] . (6)

Here n is either the neutron or proton number, taken to
be odd, with the other nucleon species held fixed at some
even number. Typical values of the gap are 0.7-0.9 Mev
in normally paired nuclei. These drop to 0.25 for some
of the spin-triplet cases as shown in Fig. 3. One sees all
of these nuclei are one unit off the N = Z line. Farther
off the line where the pairing becomes mixed, the gaps
increase to the larger value. Thus, we find some evidence
that the gaps are affected, but the predicted effect does
not extend within the drip line.

On a different note, there may be spectral signatures
of the triplet pairing and the transition. According to
Frauendorf, the spectra of odd-odd nuclei become simi-
lar to that of even-even nuclei in the limit of strong spin-
triplet pairing ([16], p. 499). condensation. Even in
the mixed-spin regime, the softness of the energy surface
suggests that there should be low-lying excitations asso-
ciated with the spin degree of freedom. The mean-field
theory has to be extended to deal with broken symme-
tries including particle number and angular momentum
before predictions can be made for spectroscopic quanti-
ties. Other observables of interest are two-particle trans-
fer direct reaction cross sections, which in principle can
be used to compare correlation strengths in the two spin
channels. Here, again, the theory needs to restore good
particle number to distinguish between the nuclei par-
ticipating in the transfer reaction, and this remains for
future work. Finally, nuclear deformation can strongly
modify pairing behavior, so it is important to extend the
calculations to the full Hartree-Fock-Bogoliubov theory
in which deformation effects are included. In this Letter,
we have focused on the qualitatively new phenomenon of

 55

 60

 65

 70

 55  60  65  70

Z

N

Gaps below the N=Z line

FIG. 3: (color online) Small and large pairing gaps (Eq. 6)
for nuclei near the spin-triplet pairing region. Blue circles:

∆
(3)
o (n) < 0.4 MeV; green squares: ∆

(3)
o (n) > 0.4 MeV.

mixed-spin pairing, predicted for nuclei that are experi-
mentally accessible.
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