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While detection of the “local form” bispectrum of primordial perturbations would rule out all
single-field inflation models, multi-field models would still be allowed. We show that multi-field
models described by the δN formalism obey an inequality between fNL and one of the local-form
trispectrum amplitudes, τNL, such that τNL > 1

2
( 6
5
fNL)

2 with a possible logarithmic scale depen-
dence, provided that 2-loop terms are small. Detection of a violation of this inequality would rule
out most of multi-field models, challenging inflation as a mechanism for generating the primoridal
perturbations.

Can we rule out inflation as a mechanism for gener-
ating primordial curvature perturbations? Inflation is
indispensable for explaining homogeneity and flatness of
the observable universe [1]. Yet, its predictions for the
statistical properties of primordial curvature perturba-
tions may be falsifiable.
The basic predictions that inflation generates adia-

batic, nearly scale-invariant, and nearly Gaussian pri-
mordial curvature perturbations [2, 3] are all consis-
tent with the current observations (see, e.g., [4]). No-
tably, many inflation models predict that the amplitude
of fluctuations on large scales is greater than that on
small scales. In terms of the power spectrum of pri-
mordial curvature perturbations ζ, we say k3Pζ(k) ∝
kns−1 with ns < 1. The power spectrum is defined by
〈ζkζk′〉 = (2π)3δ(k + k

′)Pζ(k). The latest observations
give ns = 0.96 ± 0.01 [4, 5], which may be taken as evi-
dence for inflation.
The future, more sensitive experiments will continue to

test the other predictions: adiabaticity and Gaussianity
of fluctuations. In this paper, we shall focus on the lat-
ter. Departure from Gaussianity, called non-Gaussianity,
has emerged as a powerful test of inflation over the last
decade (see [6] for reviews).
One of the major theoretical discoveries made from

these studies is that all single-field inflation models yield
a specific amount of non-Gaussianity in the so-called
squeezed limit of the bispectrum (Fourier transform of
the three-point correlation function) of ζ, given by fNL =
5
12 (1 − ns) ≃ 0.02 [7] (also see [8]). Here, fNL character-
izes the amplitude of the so-called “local form” bispec-
trum [9, 10]:

Bζ =
6

5
fNL [Pζ(k1)Pζ(k2) + (2 perm.)] , (1)

where 〈
∏3

i=1 ζ(ki)〉 = (2π)3δ3(
∑

i ki)Bζ(k1, k2, k3), and
the “squeezed limit” is given by taking k3 ≪ k1 ≈ k2,

i.e., Bζ(k1, k2, k3) →
12
5 fNLPζ(k1)Pζ(k3). All single-field

inflation models predict (1−ns)Pζ(k1)Pζ(k3) in this limit.
The current best limit is fNL = 32± 21 (68% CL; [4]).

As various second-order effects generate fNL = O(1) (see
[11] for a review and references therein), a convincing de-
tection of fNL ≫ 1 would rule out all single-field inflation
models. The Planck satellite is expected to reduce the
error bar by a factor of four [10].
However, detection of fNL would not rule out multi-

field models. How can we test them also? Our work in
this paper is motivated by the Suyama-Yamaguchi in-
equality, τNL ≥ (65fNL)

2 [12]. Here, τNL is one of the
amplitudes of the local-form trispectrum defined by [13]

Tζ = τNL[Pζ(|k1 + k3|)Pζ(k3)Pζ(k4) + (11 perm.)], (2)

where 〈
∏4

i=1 ζ(ki)〉 = (2π)3δ3(
∑

i ki)Tζ(k1, k2, k3, k4).
As emphasized in [11], if the new experimental data

(such as Planck) detect fNL (hence ruling out single-field
models) but do not see τNL large enough to satisfy the
above inequality, then a large class of multi-field models
may be ruled out. The crucial question is then, “how
generic is the Suyama-Yamaguchi inequality?” It was
pointed out in [11] that this inequality may not be generic
enough, as there are cases where this inequality is not
satisfied. Recently, Suyama et al. [14] considered the
same issue, where they have truncated the δN expansion
(given below) at the second order and have considered
a part of 1-loop corrections. The goal of this paper is
to find a more general inequality than theirs. We shall
retain the terms up to the fourth order of δN expansion,
as these terms are required for the consistent calculations
up to the 1-loop level. As a result, we find a weaker bound
than the original Suyama-Yamaguchi inequality. This is
relevant because, as shown in [15], large and observable
primordial non-Gaussianity can be generated when the
loop contributions dominate over the tree contributions
in the bispectrum and/or in the trispectrum.
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Throughout this paper, we shall consider a class of
multi-field models which satisfy the following conditions:

1. Scalar fields are responsible for generating curva-
ture perturbations; thus, potential contributions
from vector fields (see [16] for a review and ref-
erences therein) are ignored.

2. Fluctuations in scalar fields at the horizon crossing
are scale invariant and Gaussian.

Therefore, we assume that non-Gaussianity is generated
only on super horizon scales, according to the δN for-
malism [3, 17]. While the “quasi-single-field inflation”
model proposed by Chen and Wang [18] is an example to
which this condition may not apply, their model yields
τNL ≫ f2

NL, satisfying the inequality. Yet, the condition
2 is probably too strong. Whether this condition can be
relaxed significantly merits further investigation.

According to the δN formalism, the curvature pertur-
bation, ζ, is given by derivatives of the number of e-fold,
N(t, t∗) =

∫ t

t∗
Hdt′, with respect to scalar fields, ϕa, at

the horizon-crossing time t∗ (a∗H∗ = k):

ζ(x, t) = Na(t, t∗)δϕ
a
∗
(x) +

1

2
Nab(t, t∗)δϕ

a
∗
(x)δϕb

∗
(x) · · ·

(3)
where δϕa

∗
is a fluctuation of ϕa evaluated at t∗, i.e.,

δϕa
∗
(x) ≡ δϕa(t∗,x). Note that Na ≡ ∂N/∂ϕa

∗
and

Nab ≡ ∂2N/∂ϕa
∗
∂ϕb

∗
.

The second condition above implies that the power
spectrum of scalar fields is given by

〈δϕa
k
(t∗)δϕ

b
k′(t∗)〉 = (2π)3δ(3)(k+ k

′)δab
2π2

k3
P∗, (4)

where P∗ ≡ (H∗/2π)
2. Note that we have assumed that

scalar field fluctuations with different indices are uncor-
related, 〈δϕaδϕb〉 ∝ δab. This can be done without loss
of generality: we could, for example, write the corre-
lation matrix as 〈δϕaδϕb〉 ∝ Mab, where M is a real
positive symmetric matrix. One can then diagonalize M
as M = UDU t. Redefining scalar field fluctuations as
δϕ → δ̃ϕ = Uδϕ will recover Eq. (4).

Now, we impose the third condition:

3. Truncate the δN expansion [Eq. (3)] at the or-
der of δϕ4, i.e., ζ = Naδϕ

a
∗
+ 1

2Nabδϕ
a
∗
δϕb

∗
+

1
3!Nabcδϕ

a
∗
δϕb

∗
δϕc

∗
+ 1

4!Nabcdδϕ
a
∗
δϕb

∗
δϕc

∗
δϕd

∗
. Thus,

we shall ignore the contributions in the power
spectrum, bispectrum, or trispectrum coming from
O(δϕ5).

The 4th-order term is needed when we calculate all of the
1-loop contributions in fNL and τNL. In the following, we
shall include all of the 1-loop contributions, while some
of the higher-order loop contributions are also included.

The power spectrum is given, up to the 4th order, by

Pζ =P∗

[

NaNa +Tr(N2)P∗ ln(kL) +NaNabbP∗ ln(kmaxL)

+
1

4
NaccNabbP

2
∗
ln2(kmaxL)

+NabccNabP
2
∗
ln(kL) ln(kmaxL) . . .

]

, (5)

where we have used the following notations: NaNa ≡
∑

a N
2
a and Tr(N2) ≡

∑

ab NabNab. The L is a finite size
of a box which is chosen to be much larger than the region
of interest, such that the condition Lk ≫ 1 is satisfied
for arbitrary k, and kmax is the ultra-violet cutoff. The
1st term is the tree contribution; the 2nd and 3rd terms
are the 1-loop contributions; and the 4th and 5th terms
are the 2-loop contributions.
This result can be simplified by using the following

quantities (see Eq. (25) of [19]):

Ña ≡ Na +
1

2
NabbP∗ ln(kmaxL), (6)

Ñab ≡ Nab +
1

2
NabccP∗ ln(kmaxL). (7)

Then Eq. (5) becomes

Pζ = ÑaÑaP∗ (1 + Ploop + . . . ) , (8)

where we have defined a positive-definite quantity

Ploop ≡
Tr(Ñ2)

ÑaÑa

P∗ ln(kL). (9)

Here, the dots in Eq. (8) include the higher-order terms
such as N2

abccP∗

2. This is a nice way of writing the power
spectrum etc., as the results do not include the ultra-
violet cutoff, kmax, explicitly: the cutoff can be absorbed
by redefining the derivatives of N .
As we can take L such that kL ≫ 1, Ploop is essentially

a constant factor, rescaling the overall amplitude of the
power spectrum without destroying the observed scale
invariance of the power spectrum. Without loss of gener-
ality, we shall take k to be the usual normalization scale
used by the WMAP collaboration, k0 = 0.002 Mpc−1.
Kawakami et al. [20] have derived the expressions for

fNL and τNL up to the 4th order (also see [14]). These ex-
pressions are again simplified by using the redefinition of
the derivatives of N and ignoring the higher-order terms:

6

5
fNL ≃

[

ÑaÑa +Tr(Ñ2)P∗ ln(k0L)
]

−2

×
[

ÑaÑbÑab +
(

Tr(Ñ3) + 2ÑaÑbcÑabc

)

P∗ ln(k0L)
]

,

(10)

τNL ≃
[

ÑaÑa +Tr(Ñ2)P∗ ln(k0L)
]

−3

×
[

ÑaÑabÑbcÑc +
(

2ÑaÑabÑcdÑbcd +Tr(Ñ4)

+ 2ÑaÑbcÑbdÑacd + ÑaÑbÑacdÑbcd

)

P∗ ln(k0L)
]

,

(11)
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where Ñabc ≡ Nabc+
1
2NabcddP∗ ln(kmaxL). Although the

loop terms of the bispectrum and trispectrum have terms
like ln(kbL), ln(ktL) and ln(kpL) where kb ≡ min {ki}

with i = {1, 2, 3} or {1, 2, 3, 4} , kt ≡ min{ki, |~kj + ~kl|}
with (i, j, l) = {1, 2, 3, 4} and ln(kpL) ∼ ln(kiL) ∼

ln(|~kj + ~kl|L) with (i, j, l) = {1, 2, 3, 4}, we assume that
these are similar to ln(k0L), i.e., ln(k0L) ∼ ln(kbL) ∼
ln(ktL) ∼ ln(kpL). From now on, we shall remove the

tildes from the equations, i.e., Ñ → N .
Now, we are ready to derive the new inequality. First of

all, we use the inequality between arbitrary real numbers
α and β: α2 + β2 ≥ 1

2 (α+ β)
2
. Choosing α and β as

α ≡ [NaNa(1 + Ploop)]
−2

[NaNbNab +NaNbcNabcP∗ ln(k0L)] ,

β ≡ [NaNa(1 + Ploop)]
−2 [

Tr(N3) +NaNbcNabc

]

P∗ ln(k0L),
(12)

we find

[NaN
a(1 + Ploop)]

−4

×
[(

NaNbNab +NaNbcNabcP∗ ln(k0L)
)2

(13)

+
(

Tr(N3) +NaNbcNabc

)2
P2
∗
ln2(k0L)

]

≥
1

2

(

6

5
fNL

)2

.

Next, pick up the first term of the LHS in (13), and
use the Cauchy-Schwarz inequality. When we define the
inner product of arbitrary vectors va and ub as 〈v, u〉 ≡
∑

a vaua, then the Cauchy-Schwarz inequality leads to
〈v, u〉2 ≤ 〈v, v〉〈u, u〉. Choosing va and ua as va ≡ Na

and ua ≡ NbNba +NbcNabcP∗ ln(k0L), we find

(

NaNbNab +NaNbcNabcP∗ ln(k0L)
)2

(NaNa)4(1 + Ploop)4

<
NbNbaNadNd + 2NdNdaNabcNbcP∗ ln(k0L)

(NaNa)3 (1 + Ploop)
3

+
NabNabcNcdeNdeP

2
∗
ln2(k0L)

(NaNa)3(1 + Ploop)3
, (14)

where we have also used 1/(1+Ploop) < 1 with Ploop > 0
on the RHS. Note that the last term on the RHS is a
2-loop contribution, which becomes important later.
Finally, pick up the second term of the LHS in (13),

and use the Cauchy-Schwarz inequality again: for arbi-
trary real symmetric matricesM , L, we have Tr2(LM) ≤
Tr(M2)Tr(L2). Choosing L and M as Lab ≡ Nab and
Mab ≡ NacNcb +NcNcab, we find

(

Tr(N3) +NaNbcNabc

)2
P2
∗
ln2(k0L)

(NaNa)4(1 + Ploop)4

<

(

Tr(N4) + 2NacNcbNdabNd +NcNcabNabdNd

)

P∗ ln(k0L)

(NaNa)3(1 + Ploop)3
,

(15)

where we have also used Ploop/(1 + Ploop) < 1. Here,
let us reconsider the effect of our approximation that all
the logarithmic factors are similar: ln(k0L) ∼ ln(kbL) ∼
ln(ktL) ∼ ln(kpL). If we relax this assumption, then
we should replace ln(k0L) in the right hand side of
Eq. (15) with ln(k0L) → ln(ktL)R, where R ≡
ln2(kbL)/ ln(ktL) ln(kpL). Therefore, our approxima-
tion is valid also when the geometric mean of ln(ktL)
and ln(kpL) is similar to ln(kbL) (but not necessarily
ln(ktL) ∼ ln(kpL)).
Collecting these results, we obtain

τNL + (2 loop) >
1

2

(

6

5
fNL

)2

, (16)

where the “2 loop” term is the last term in the RHS of
Eq. (14). This result shows that, when we allow our-
selves for completely general models in which this par-
ticular 2-loop term can become important, the Suyama-

Yamaguchi inequality, τNL ≥
(

6
5fNL

)2
, may be violated

badly. This illustrates the limitation of this inequality.
Still, from a model-building point of view, it is reason-

able to assume that the 2-loop terms are sub-dominant
compared to the tree or 1-loop terms; otherwise, we
would have to require fine-tunings between the deriva-
tives of N . Let us then study the consequence of ig-
noring this particular 2-loop term. We shall impose the
following conditions:

NabNabcNcdeNdeP
2
∗
ln2(k0L)

NbNbaNacNc

≪ 1,

NabNabcNcdeNdeP
2
∗
ln2(k0L)

NbNbaNacNc

≪

∣

∣

∣

∣

∣

NdNdaNabcNbcP∗ ln(k0L)

NbNbaNacNc

∣

∣

∣

∣

∣

.

(17)

The first condition is (tree)≫(2-loop), and the second is
(1-loop)≫(2-loop) for the terms in the RHS of Eq. (14).
Interestingly, from the Cauchy-Schwarz inequality for
NabNb and NabcNbc, we find

(

NdNdaNabcNbcP∗ ln(k0L)

NbNbaNacNc

)2

≤
NabNabcNcdeNdeP

2
∗
ln2(k0L)

NbNbaNacNc

≪

∣

∣

∣

∣

∣

NdNdaNabcNbcP∗ ln(k0L)

NbNbaNacNc

∣

∣

∣

∣

∣

, (18)

from which we obtain the following bound on a particular
form of 1-loop contributions:

∣

∣

∣

∣

∣

NdNdaNabcNbcP∗ ln(k0L)

NbNbaNacNc

∣

∣

∣

∣

∣

≪ 1. (19)

As a result, if we ignore the last term in the RHS of
Eq. (14), we must also ignore the second term, leaving



4

only the tree-level term in the RHS of Eq. (14). This is a
peculiar feature of these terms, whose physical meaning
is not clear.

In any case, provided that the following additional con-
dition is met:

4. The 2-loop contributions are sub-dominant com-
pared to the tree-level or 1-loop contributions (or
at least the particular 2-loop term in the RHS of
Eq. (14) is small compared to the others),

we finally arrive at the new inequality:

τNL >
1

2

(

6

5
fNL

)2

, (20)

which is the main result of this paper, and is valid as
long as the 2-loop contributions are small. This result
generalizes the Suyama-Yamaguchi inequality (which in-
cluded only the tree-level terms) as well as Ref. [14]
(which included up to the second-order terms). This
relation can have a logarithmic scale dependence via
R = ln2(kbL)/[ln(ktL) ln(kpL)].

What are the implications for inflation? The most in-
teresting case would be the observation of a complete

violation of the inequality, i.e., τNL ≪ 1
2

(

6
5fNL

)2
, which

implies that inflation cannot be responsible for gener-
ating the observed fluctuations, provided that (1) scalar
fields are the source of fluctuations; (2) fluctuations at the
horizon crossing are scale invariant and Gaussian; (3) the
evolution of fluctuations obeys the δN formalism; and (4)
the 2-loop contributions are small.

We may not be so far away from testing this prediction.
If the value of fNL is as large as what is implied from the
current data, fNL ∼ 30, then the threshold value, τNL ∼
650, is close to the 2-σ limit expected from Planck [21,
22]. The large-scale structure observations should also
help improving the limits on τNL [23]. Therefore, in the
event that Planck sees fNL (thus ruling out single-field
models, one of the two things can happen: (1) τNL is also
detected in excess of 1

2 (
6
5fNL)

2, confirming predictions
from multi-field models, or (2) τNL is either not detected,
or detected below 1

2 (
6
5fNL)

2, ruling out most of the multi-
field models that satisfy the above 4 conditions. This
argument [11] and our result provide a strong science case
for measuring the local-form trispectrum of the cosmic
microwave background as well as that of the large-scale
structure of the universe.

This work is supported in part by NSF grant PHY-
0758153 and by the GCOE Program “Weaving Science
Web beyond Particle-matter Hierarchy” at Tohoku Uni-
versity and by a Grant-in-Aid for Scientific Research from
JAPA (Nos. 18072001, 20540245 for TF) as well as by
Core-to-Core Program “International Research Network
for Dark Energy.”

∗ sugiyama@astr.tohoku.ac.jp
[1] A. H. Guth, Phys. Rev. D23, 347 (1981); A. D. Linde,

Phys. Lett. B108, 389 (1982); B129, 177 (1983); A. Al-
brecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220
(1982).

[2] V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33,
532 (1981); A. H. Guth and S. Y. Pi, Phys. Rev. Lett.
49, 1110 (1982); S. W. Hawking, Phys. Lett. B115, 295
(1982); J. M. Bardeen, P. J. Steinhardt, and M. S.
Turner, Phys. Rev. D28, 679 (1983).

[3] A. A. Starobinsky, Phys. Lett. B117, 175 (1982).
[4] E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 180,

330 (2009); 192, 18 (2011).
[5] J. Dunkley et al. (ACT), (2010), arXiv:1009.0866.
[6] E. Komatsu, (2001), ph.D. thesis at Tohoku University,

astro-ph/0206039; N. Bartolo, E. Komatsu, S. Matar-
rese, and A. Riotto, Phys. Rept. 402, 103 (2004); E. Ko-
matsu et al., Astro2010: The Astronomy and Astro-
physics Decadal Survey, Science White Papers, no. 158
(2009), arXiv:0902.4759; K. Koyama, Class.Quant.Grav.
27, 124001 (2010); X. Chen, Adv.Astron. 2010, 638979
(2010); D. Wands, Class.Quant.Grav. 27, 124002 (2010).

[7] P. Creminelli and M. Zaldarriaga, JCAP 10, 6 (2004).
[8] J. M. Maldacena, JHEP 05, 013 (2003); V. Acquaviva,

N. Bartolo, S. Matarrese, and A. Riotto, Nucl. Phys.
B667, 119 (2003); D. Seery and J. E. Lidsey, JCAP
0506, 003 (2005); X. Chen, M.-x. Huang, S. Kachru, and
G. Shiu, 0701, 002 (2007); C. Cheung, A. L. Fitzpatrick,
J. Kaplan, and L. Senatore, 0802, 021 (2008); J. Ganc
and E. Komatsu, 1012, 009 (2010); S. Renaux-Petel,
1010, 020 (2010).

[9] A. Gangui, F. Lucchin, S. Matarrese, and S. Mollerach,
Astrophys. J. 430, 447 (1994); L. Verde, L. Wang, A. F.
Heavens, and M. Kamionkowski, Mon. Not. R. Astron.
Soc. 313, 141 (2000).

[10] E. Komatsu and D. N. Spergel, Phys. Rev. D63, 063002
(2001).

[11] E. Komatsu, Class. Quant. Grav. 27, 124010 (2010).
[12] T. Suyama and M. Yamaguchi, Phys. Rev. D77, 023505

(2008).
[13] L. Boubekeur and D. H. Lyth, Phys. Rev. D73, 021301

(2006).
[14] T. Suyama, T. Takahashi, M. Yamaguchi, and

S. Yokoyama, (2010), arXiv:1009.1979.
[15] Y. R. Heiner R. S. Cogollo and C. A. Valenzuela-Toledo,

JCAP 0808, 029 (2008); C. A. V.-T. Yeinzon Rodriguez,
Phys.Rev. D81, 023531 (2010).

[16] E. Dimastrogiovanni, N. Bartolo, S. Matarrese, and
A. Riotto, Adv.Astron. 2010, 752670 (2010).

[17] A. A. Starobinsky, JETP Lett. 42, 152 (1985); D. S.
Salopek and J. R. Bond, Phys. Rev. D42, 3936 (1990);
M. Sasaki and E. D. Stewart, Prog. Theor. Phys. 95, 71
(1996); D. H. Lyth and Y. Rodriguez, Phys. Rev. Lett.
95, 121302 (2005).

[18] X. Chen and Y. Wang, Phys. Rev. D81, 063511 (2010);
JCAP 1004, 027 (2010).

[19] C. T. Byrnes, K. Koyama, M. Sasaki, and D. Wands,
JCAP 0711, 027 (2007).

[20] E. Kawakami, M. Kawasaki, K. Nakayama, and F. Taka-
hashi, JCAP 0909, 002 (2009).

[21] N. Kogo and E. Komatsu, Phys.Rev. D73, 083007



5

(2006).
[22] J. Smidt, A. Amblard, C. T. Byrnes, A. Cooray, A. Heav-

ens, et al., Phys.Rev. D81, 123007 (2010).
[23] D. Jeong and E. Komatsu, Astrophys.J. 703, 1230

(2009); V. Desjacques and U. Seljak, Classical and Quan-
tum Gravity 27, 124011 (2010).


