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Conformation of ring polymers in 2D constrained environments
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The combination of ring closure and spatial constraints has a fundamental effect on the statistical
properties of semi-flexible polymers such as DNA. However, studies of the interplay between circu-
larity and constraints remain handicapped by the complete absence of single-molecule experimental
data concerning polymer conformations. We begin the program of filling this gap by using atomic
force microscopy to probe the conformation of circular DNA molecules in two dimensions and in
the concentrated regime (above the overlap concentration c*). Molecules in this regime experience
a collapse, and we demonstrate by comparing their statistical properties with those of simulated
vesicles under pressure that the latter simple model provides an excellent description of the complex
concentrated state. Some circular molecules also create confining regions in which other molecules
are trapped in their confined state. Thus we show further that spatially confined molecules fold into
specific conformations close to those found for linear chains, and strongly dependent on the size of
the confining box.

PACS numbers: 87.64.Dz, 82.35.Gh, 87.14.gk, 36.20.Ey, 89.75.Da

Ring closure of a polymer is one of the important fac-
tors influencing its statistical mechanical properties [1],
e.g. scaling [2, 3], shape [4, 5] and diffusion [6–8], be-
cause it restrains the accessible phase space. The theo-
retical description of circular chains (knots or catenanes)
is a challenging problem, owing to the difficulties inher-
ent to a systematic theoretical analysis of such objects
constrained to a unique topology. The problem is partic-
ularly evident for systems of interacting chains, for exam-
ple in semi-dilute or confined states. Cates and Deutsch
[9] pointed out that topological constraints act to alter
quite dramatically the behavior of chains in a melt. This
has been confirmed by experiments and simulations for
the 3D system [10], but to our knowledge not for the 2D
case where studies are limited to the linear case [11].

The behavior of confined circular chains remains also
poorly understood, and only few experiments explored
this system [12]. Ring closure, and more generally topol-
ogy, plays a key role in a wide range of biophysical con-
texts where DNA is constrained: segregation of the com-
pacted circular genome of some bacteria [13], formation
of chromosomal territories [14] in cell nuclei, compaction

FIG. 1: Nicked pBR322 plasmids deposited at (a) low and
(b) high density on mica (white scale bar represents 500 nm).

and ejection of the knotted DNA of a virus [15, 16], mi-
gration of a circular DNA in an electrophoresis gel [17]
or in a nano-device such as a nanochannel [18], or local-
ization of knots [3, 19]. Therefore a better understanding
of the basic properties of such systems is highly needed.

In the present Letter, we would like to present exper-
imental findings on ring polymers in the concentrated
phase and in confined environment obtained at the single
molecule level by means of the atomic force microscope
(AFM) as depicted in Fig. 1.

A 10 µl drop of nicked circular-plasmid DNA pBR322
(4361 base pairs) at a concentration of 0.5 mg/ml in
1 mM MgCl2, was deposited for 5 minutes on a freshly
cleaved mica surface, then rinsed with 10 ml of ultra-
pure water and dried. The samples were then imaged in
tapping mode with silicon nitride probes on a Nanoscope
III Veeco AFM. These samples offered us the possibil-
ity to study both the semi-dilute state and the confined
state. Indeed, the majority of molecules in these sam-
ples are collapsed in the semi-dilute phase (e.g. Fig. 2a,
the collapse is evidenced in the measure of the area en-
closed by the molecules, see Tab. I), but in addition, some
molecules can be trapped inside the perimeter of another
already present on the surface, leading to a rearrange-
ment of both molecules (e.g. Fig. 2c): the outer one
experiences swelling (also evidenced through area mea-
surement, see Tab. I) and the inner one is confined within
an approximately circular boundary. For clarity, we sep-
arate the different molecular states into 3 classes: class
I refers to those molecules in dense overlapping phase
(the semi-dilute regime, c >c*, shown in Fig. 2a); class
II refers to swollen molecules (Fig. 2c); class III covers
confined molecules (Fig. 3). Additionally, we system-
atically compare these three classes to the dilute case,
analysed in previous publications [20–22]. Nicking en-
sures that no confounding supercoils are present, and the
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deposition technique ensures that the molecules equili-
brate in two dimensions [20], meaning that most of the
intra- and inter-chain crossings are suppressed. To ensure
good comparison with theory, the few molecules present-
ing chain crossings are discarded before the analysis.

From the AFM images, the trajectories of individ-
ual molecules were determined [23] separately for each
class, and used to calculate the different statistical quan-
tities needed to test both theoretical and numerical pre-
dictions. In particular, we wanted to verify whether
collapsed (class I) and swollen (class II) molecules, ex-
posed to the pressure generated by the excluded volume
of surrounding or enclosed chains, could be treated as
2D vesicles subject to a homogenous pressure. To this
end, we simulated pressurized 2D vesicles following the
model originally proposed by Leibler, Singh and Fisher
(LSF model) [24]. These vesicles are 2D self-avoiding
boundaries with a difference of pressure between their
geometrical in- and outside. For the simulation, the vesi-
cle boundary is partitioned into N cylindrical segments
whose vertices are randomly displaced following a Monte-
Carlo Metropolis algorithm. The energy function of the
Metropolis criteria is composed of potentials reproduc-
ing the physical properties of the pBR322 molecules: the
length is conserved by giving an infinite energy to seg-
ments deviating by more than ±25% from their original
length, the bending energy is given by the bending po-
tential Eb = gΣN

i=1
θ2i where θi is the deflection angle be-

tween segments i and i+1 and g the bending constant set-
ting the persistence length to lp = 50 nm. Self-avoidance
is respected by giving a radius of 3 nm to each segment
and by setting the energy of self-intersecting conforma-
tions to infinity. Finally, as in Leibler et al. [24], to
simulate the pressure difference a term proportional to
the molecule area S is added, Ep = ∆pS. Fig. 2b and d
show snapshots of such vesicles with negative and posi-
tive pressures respectively.

Visual comparison of imaged and simulated molecules
in Fig. 2 already suggests a good correspondence be-
tween data and model. We verify now this by measur-
ing statistical polymer properties, and begin by treating
the bond correlation functions G(s) of chains in semi-
dilute phase (class I molecules) and of swollen chains
(class II molecules) together because of their similar-
ity. The function G(s) gives the orientational correla-
tion along the chain between two points separated by
a contour length s. In the ideal case of a linear Gaus-
sian chain, the correlation function decays exponentially,
G(s) = exp(−s/lp), with a characteristic persistence
length lp. However, more complex effects, such as self-
avoidance, specific topologies or a high polymer concen-
tration, are reflected in different shapes for G(s), which
expresses these constraints in a compact form [22, 25, 26].
The bond correlation functions are presented in Fig. 3,
and compared to the dilute case. Molecules in the over-
lapping phase are characterised by a more rapid initial
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FIG. 2: Representative images of (a) a DNA molecule col-
lapsed in the semi-dilute phase (class I), (b) a simulated chain
with ∆p < 0, (c) a swollen DNA chain (class II) and (d) a
simulated chain with ∆p > 0 (white scale bars are 250 nm).

decay of G(s) followed by a weaker anti-correlation. For
swollen chains, exactly the opposite behavior is observed,
namely a slower initial decay followed by a stronger anti-
correlation. This agrees with visual observation of the
molecules in Fig. 2, where swollen chains appear to be
stiffer than chains in the dilute phase, whereas the oppo-
site applies for chains in the overlapping phase.
In Fig. 3, the experimentally measured correlation

functions are compared to those extracted from the nu-
merical simulations of vesicles under pressure. The be-
havior of both swollen and collapsed chains can be recov-
ered by tuning ∆p, which is positive for collapsed chains
and negative for swollen ones. The ∆p values used in Fig.
3 were not extracted from a fit, but were selected from
an ensemble of curves as those giving the best match to
the data. The agreement between experiments and sim-
ulations is excellent, in particular where the numerical
data recover fine details, like for example the initial neg-
ative curvature of the class II correlation function. This
indicates that, at least for G(s), pressurized vesicles and
class I and II chains can be described formally by the
same theory. This simplification of the problem may be
extended still further: comparing the ensemble of curves
in Fig. 3 with that corresponding to chains of different
rigidities χ = L/lp (L is the total length of the chain),
reproduced from Ref. [20] as the inset in Fig. 3, it is
clear that the above mentioned intuitive relation between
rigidity and pressure is correct. Thus a polymer ring in
the semi-dilute regime may be viewed, when considering
only the bond correlation function, simply as a ring with
variable rigidity.
From our results for the correlation function, ring poly-

mers in classes I and II are clearly described very well
by the LSF model, and thus we pursue our comparison
with the results of Fisher and co-workers who extensively
studied the shape parameters of vesicles. As the corre-
lation function, these shape parameters are convenient
measures characterizing the different polymer classes be-
cause they depend on the type of polymer (Gaussian, self-
avoiding), its dimensionality, its topology and its rigid-
ity [4, 5, 27, 28]. Typical shape measures include the
anisotropy Σ and the asphericity A, that are defined
as combinations of R2

G1
and R2

G2
, the small and large

principal axes of the radius-of-gyration tensor RG, by
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Σ = 〈R2

G1
/R2

G2
〉 and A = 〈(R2

G1
−R2

G2
)2/(R2

G1
+R2

G2
)2〉.

Using these shape parameters, Camacho and Fisher
[28] have investigated the different phases of vesicles
as functions of ∆p and χ. In particular, they showed
that vesicles with moderate χ changed their behavior
from self-avoiding walk to lattice-animal by increasing
∆p from 0 to large positive values. Indeed upon increas-
ing ∆p, vesicles fold on themselves, and create branched
structures made of loops, that belong to the same uni-
versality class as lattice-animals. Here we investigate
whether the DNA rings compressed in the semi-dilute
phase also fold in this particular way, as it has been
shown theoretically in 3D [29]. At ∆p = 0, the molecules
are simply considered as self-avoiding chains, for which
Σ was estimated numerically by Bishop et al. [27] to
be Σ = 0.4, and recalculated in Ref. [28] as Σ = 0.39.
Our experimental result for measurements in the dilute
case is Σ = 0.38 ± 0.02, in very good agreement with
the latter values. The anisotropy for lattice animals was
calculated by Family et al. [30] to be Σ∞ = 0.29, and
in the LSF model [28] to be Σ = 0.275. Our results for
class I molecules, which do experience a folding, yield
Σ = 0.272 ± 0.02, a value in very good agreement with
the numerical estimates for both lattice animals and com-
pressed vesicles. The values are summarized in Tab. I,
where asphericity values are provided as well as supple-
mentary information. The agreement of our estimates
with the numerical values, combined with the above anal-
ysis ofG(s), strongly supports the analogy between circu-
lar polymers in the semi-dilute phase and vesicles under
pressure. We note in passing that a similar shape analy-
sis for swollen chains (class II molecules) is of no interest,
because the anisotropy simply tends towards Σ = 1. We
are able only to confirm that the anisotropy of swollen
chains is indeed larger than in the dilute case (Table I).

TABLE I: Shape parameters and area (in units of the dilute
circular molecules).

Class Area Σ A

I semi-dilute 0.73 0.272 ± 0.02 0.4± 0.02

II swollen 1.66 0.6± 0.01 0.082 ± 0.006

III confined 0.57 0.42 ± 0.03 0.2± 0.02

Dilute 1.0 0.38 ± 0.02 0.27± 0.02

We now turn our attention to the confined chains (class
III) depicted in Fig. 4. We stress that it is very difficult
to design an experiment allowing one to probe the local
conformation of confined, semi-flexible polymers from the
nanometre scale to the micron scale. In the present case,
it is the swollen chains which create the confining geom-
etry, a nearly circular box of contour length s equal to
that of pBR322 DNA. Consequences of confinement are
clearly visible in the oscillatory behavior of the correla-

FIG. 3: Bond correlation functions G(s) for circular DNA un-
der different conditions (points) and for simulated molecules
under different pressures ∆p (full lines). The inset shows G(s)
for DNA molecules of different rigidities χ in the dilute case.

b
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FIG. 4: (a) The bond correlation function G(s) for confined
DNA molecules (class III) is compared to the analytical ap-
proximation proposed by Liu et al. [33]. (b) and (c) Ex-
amples of confined conformations (class III). Conformations
of type (b), a curved double-fold, represent the majority of
cases (white scale bar is 250 nm).

tion function G(s), as visible in Fig. 4. This feature has
been observed numerically in 3D for semi-flexible linear
and ring strings confined within spheres, where the chains
experience a buckling in the form of a saddle [31, 32],
as well as for the semi-confinement of a linear chain in a
tube [18] and yet more obviously for 2D linear chains con-
fined in circular and rectangular boxes [33]. In the latter
study, the authors explored the interplay between the box
size W and the chain rigidity lp by analyzing G(s). In
explaining the oscillatory behavior of G(s), they found
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that once lp ≃ W , linear chains fold into specific con-
formations to limit the bending-energy penalty: either
stable and spiral-like or unstable double-folded confor-
mations. Interestingly, the latter conformation is also
adopted by the imaged circular DNA chains, showing
that under space constraint, ring and linear molecules
behave similarly. This is supported by analyzing the
data with the help of the approximate correlation func-
tion provided by the same authors for confined linear
chains G(s) = D exp(−s/le) cos(s/B), where D is a nu-
merical factor, B a length scale related to W and le an
effective persistence length. The fit to our data using that
equation is shown in Fig. 4. At the qualitative level, the
agreement is excellent; quantitatively, the deduced value
B ≃ 127 nm corresponds closely to half the radius of
a perfectly circular pBR322 chain, R = 238 nm. This
matches very well the findings of Liu et al. [33], that in
general B = W/2. The value of the effective persistence
length is le = 307 nm, showing that the constraint of
confinement maintains the molecules in rather rigid con-
formations. Our results therefore demonstrate that the
effects of confinement are extremely strong, forcing the
molecules to adopt a very limited set of configurations.
Further, this set of configurations is to a certain extent
shared between ring and linear molecules.
By analyzing AFM images of semi-dilute samples of

circular DNA, we have performed the first experimental
investigation of polymeric systems which have to date
received intensive but exclusively theoretical attention.
Our direct measurements of shape parameters and cor-
relation functions demonstrate a number of fundamental
properties of polymers. In particular, we have shown
that the vesicle model of Fisher and coworkers [24] is
very effective in describing the semi-dilute phase of cir-
cular polymers. The utility of this link between the two
problems cannot be underestimated, because it has also
been shown [34] that circular polymers confined in an
array of obstacles and folding into lattice-animal confor-
mations can be mapped to the problem of vesicles under
pressure. Thus three apparently disconnected problems
exhibit very similar types of behavior, greatly simplifying
their understanding due to the range of different theoret-
ical and numerical tools which may be used to explain
them. Our data also demonstrate that circular DNA can
be efficiently used as a nano-well to study polymer con-
finement down to the nanometer level.
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