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Determining the stability of genetic switches: explicitly accounting for mRNA noise
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Cells use genetic switches to shift between alternate gene expression states, e.g., to adapt to new
environments or to follow a developmental pathway. Here, we study the dynamics of switching in a
generic-feedback on/off switch. Unlike protein-only models, we explicitly account for stochastic fluc-
tuations of mRNA, which have a dramatic impact on switch dynamics. Employing the WKB theory
to treat the underlying chemical master equations, we obtain accurate results for the quasi-stationary
distributions of mRNA and protein copy numbers and for the mean switching time, starting from
either state. Our analytical results agree well with Monte Carlo simulations. Importantly, one can
use the approach to study the effect of varying biological parameters on switch stability.

PACS numbers: 87.18.Cf, 82.39.-k, 02.50.Ey, 87.17.Aa

Genetic switches allow cells to switch between distinct
gene expression states in response to environmental stim-
uli and/or internal signals. The ultimate stability of
these states is determined by stochastic fluctuations of
mRNA and proteins during gene expression [1] that can
give rise to spontaneous switching, even in the absence of
a driving signal. When gene expression states are stable
on the time scale of cellular division they can carry epige-
netic information across generations, however, when they
are more transient they may provide a beneficial source
of heterogeneity in genetically identical populations.

Previous studies of noise-driven genetic switches have
shown that switching can be treated as a first-passage
problem of the underlying Markov process. These results
were obtained either by using the probability generating
function formalism, or by employing semi-classical ap-
proximation schemes to the chemical master equations
(CMEs) or related Langevin equations [2–5]. These stud-
ies, however, focused on protein-only models and ignored
the presence of mRNA and thereby the influence of tran-
scriptional noise. Recently it has been shown that ex-
plicitly accounting for mRNA in the underlying CMEs
has a strong impact on switching times [6, 7]. A general
method for accurately determining the mRNA/protein
distributions and stability of feedback-based switches is
of great interest, as they regulate diverse biological phe-
nomena, such as microbial environmental adaptation, de-
velopmental pathways, and bacteriophage lysogeny [7–9].

In this study, we explicitly account for the mRNA noise
and present a concise analytical framework for accurately
calculating the stability of gene expression switches sub-
ject to stochastic fluctuations of protein/mRNA. Our ap-
proach is demonstrated on a two-state positive feedback
switch, which was experimentally shown to describe bi-
ological switching [10]. We apply a WKB theory [11]
to the CMEs and obtain the quasistationary probabil-
ity distributions of mRNA and protein copy numbers in
the on and off states, from which we extract the mean
switching times starting from either state. Our results
agree well with Monte Carlo simulations. Finally, we use
our analytical predictions to study the effect of promoter
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FIG. 1: (Color online) (a) Model for positive feedback net-
work. Transcription and translation are modeled as first-order
processes with rates a and γb, respectively. mRNA and pro-
teins undergo first order degradation with rates γ and 1 (we
rescale rates by the protein decay rate). The feedback func-
tions kon(n) and koff (n) control promoter transitions. (b)
The momentum py vs protein copy number n. The thick line
indicates the off→on switching trajectory, and shaded areas
correspond to the entropy barriers for switching. (c) mRNA
m and protein counts in a typical Monte Carlo trajectory un-
dergoing switching. In (b,c) K = ab= 2400, b= 22.5, h= 2,
n50 =1000, kmin

0 =kmin
1 =a/100, kmax

0 =kmin
1 =a, and γ=50.

fluctuations on switching stability.

We consider a two-state gene-expression model where
transitions between a transcriptionally active and inac-
tive promoter are controlled by the protein copy number
n via positive feedback (see Fig. 1(a)). The transition
rates into the active and inactive states are kon(n) ≡
f(n) and koff (n)≡g(n). While our analytical treatment
holds for generic f(n) and g(n), we consider a con-
crete example using Hill-type functions f(n) = kmin

0 +
(kmax

0 −kmin
0 )nh1/(nh1

50 + nh1) and g(n)=kmax
1 −(kmax

1 −
kmin
1 )nh2/(nh2

50 + nh2), which were shown to be biologi-
cally relevant, e.g., in the lac operon [9]. Here n50 is the
curve’s midpoint and for simplicity we set h1 = h2 = h.

The deterministic rate equations (DREs) for the mean
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FIG. 2: (Color online) (a) Protein (left) and mRNA (right)
QSDs in the off state showing WKB result (7) (solid) and
MC simulations (4) for b=2 and h=2. Our results converge
to those of [12] (dashed) for h → ∞. (b) As in (a) for the
on state. (c) The Kullback-Leibler divergence (see text) vs.
h comparing the WKB and MC PDFs of the off state for
b=2.5. (d) The KL divergence vs. b of the off state for h=2
(×) and h=2.5 (4). Insets: The theory holds for K∆S � 1.
Other parameters are K=ab=3200, n50 =2000, kmin

0 =a/50,
kmax
0 =a, kmin

1 =a/100, kmax
1 =a/2, and γ=50.

number of mRNA, M , and proteins, N , read

Ṁ = a f(N)/[f(N)+g(N)]−γM, Ṅ = γbM−N, (1)

where f(N)/[f(N) + g(N)] is the probability for an ac-
tive promoter. To exhibit bistability, Eqs. (1) must have
(at least) three (positive) fixed points. We denote by
Non and Noff , respectively, the attracting fixed points
corresponding to the average protein copy number in the
on and off states, and assume that 1 � Noff � Non.
These points are separated by a repeller N0 such that
Noff < N0 < Non. For biologically-relevant parameters,
see below, one has a ∼ kmax

0,1 � kmin
0,1 , and b = O(1).

Also, when h � 1, Non ' a b ' Noffk
max
1 /kmin

0 . Thus,
K ≡ a b� 1 – the typical protein number in the on state
– will serve as the large parameter of the theory.

DREs (1) ignore noise and predict that, once the sys-
tem has settled in one of the attracting fixed points, it
stays there forever. Yet, the presence of intrinsic noise al-
lows switching between these fixed points by crossing the
corresponding entropy barrier [13]. In the stochastic pic-
ture, starting from the vicinity of either state the system
rapidly converges into the quasistationary distribution
(QSD) about this state. This distribution is metastable,
and slowly decays due to a (exponentially small) probabil-
ity leakage through the entropy barrier at N0 [13, 14]. It
is this leakage that determines the corresponding switch-
ing rates between the metastable states.

To model the stochastic behavior of the switch, we use
two coupled CMEs. These describe the dynamics of Pm,n

and Qm,n – the probability distribution functions (PDFs)

of having m mRNAs and n proteins at time t with the
promoter in the inactive and active state, respectively:

Ṗm,n =g(n)Qm,n−f(n)Pm,n+APm,n

Q̇m,n =−g(n)Qm,n+f(n)Pm,n+
[
A+a(E−1m −1)

]
Qm,n.(2)

Here, Ej
nf(n) = f(n + j), A ≡ (E1

n − 1)n + γ(E1
m −

1)m+ γbm(E−1n − 1) is a birth-death operator related to
the inactive promoter, and

∑
Pm,n +Qm,n = 1. We are

seeking the QSD starting from the vicinity of Noff (the
on state treatment is equivalent, see below). Putting
Ṗm,n = Q̇m,n = 0 in Eqs. (2) (that are exponentially
small for K � 1), and eliminating, e.g., Qm,n we obtain

0=
{
A + g(n)−1

[
A + a(E−1m −1)

]
[f(n)−A]

}
Pm,n. (3)

In the case of constant transition rates between the
active and inactive states, Eqs. (3) were asymptotically
solved in the γ � 1 limit using the probability generating
function [12, 15]. However, for generic feedback functions
the generating function formalism cannot be used.

Instead, we use here a powerful method based on the
WKB approximation [11], to treat the (quasi)stationary
CMEs (3) [13]. The WKB ansatz reads

Pm,n ≡ P (x, y) ∼ exp[−KS(x, y)]. (4)

Here x = m/K and y = n/K are the densities of the
mRNA and proteins, respectively. Plugging ansatz (4)
into Eq. (3), e.g. the step operator E±1m is replaced in
the leading order by the function e∓∂xS(x,y). After some
algebra, one arrives in the leading order at a stationary
Hamilton-Jacobi equation H(x, y, ∂xS, ∂yS) = 0, with

H = A+ g̃(y)−1
[
A+ b−1(epx − 1)

]
[f̃(y)−A]. (5)

Here A = A(x, y, px, py) = y(e−py −1) + γx(e−px−1) +
γbx(epy − 1) is now a function, and we have used the
rescaled feedback functions f̃(y) = f(y)/K and g̃(y) =
g(y)/K, and mRNA production rate a/K = b−1. Also,
in analogy to classical mechanics we have introduced the
momenta px = ∂xS(x, y) and py = ∂yS(x, y), corre-
sponding to the steepness of the sought PDF’s [13, 16].
Note that putting px = py = 0 corresponds to mean-field
dynamics; in this case using (5) the Hamilton’s equations
for ẋ = ∂px

H and ẏ = ∂py
H become DREs (1) divided by

g(n)/[f(n) + g(n)] [since (5) corresponds to the inactive
state occupied with probability g(n)/[f(n) + g(n)]].

The strength of this theory is that it can accurately ac-
count for rare large fluctuations responsible for switching.
To do so one has to solve the Hamilton’s equations for ẋ
and ẏ together with ṗx = −∂xH and ṗy = −∂yH. Now,
as we look for a zero-energy trajectory of (5), the action
reads S(x, y) =

∫
pxdx+pydy, which yields PDF (4). 2D

Hamiltonian systems can be solved numerically [3]. In
our case such a solution would yield the complete statis-
tics for arbitrary mRNA degradation rates, which is im-
portant e.g. in eukaryotic systems where γ = O(1).
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Further analytical progress can be made in the regime
of γ � 1 (relevant for bacterial systems), for which the
mRNA dynamics is enslaved to that of the protein [12].
We adiabatically eliminate [17] the fast component in
the mRNA dynamics by assuming x and px rapidly con-
verge to slowly-varying functions of (y, py). Taking y
and py constant and putting ẋ = ṗx = 0, one obtains
x = O(γ−1) [18], and px = −ln(1 + b− bepy ) [19], so that
Eq. (5) becomes a reduced Hamiltonian Hr(y, py)

Hr =(z−1−1)

{
y+

[
y+

z

b(z−1)−1

][
f̃(y)−y(z−1−1)

g̃(y)

]}
(6)

with z ≡ epy . This Hamiltonian effectively accounts for
the fact that the proteins are produced in geometrically
distributed bursts with mean b, which in turn asymptot-
ically accounts for the mRNA noise when γ � 1. How-
ever, had one initially eliminated the mRNA species from
CMEs (2) using geometrically distributed protein births,
one would have obtained an analytically intractable one-
dimensional CME. This is because the system under con-
sideration is a two-state switch with non-linear feedback.

The (nontrivial) zero-energy trajectory of Hamilto-
nian (6) encodes the stochastic dynamics of (only) the
proteins, and corresponds to its quasi-stationary behav-
ior. This trajectory gives py as function of y and repre-
sents the most probable path the stochastic system fol-
lows while undergoing switching [13, 16]. The normaliz-
able solution reads py(y) = ln[(−B+

√
B2 − 4AC)/(2A)],

see Fig. 1(b), where A = (1 + by)[y+ f̃(y)] + byg̃(y), B =
−y[y(1+2b)+1+(1+b)(f̃(y)+ g̃(y))], and C = (1+b)y2.
Thus S(y) '

∫ y
py(y′)dy′ [20], and using (4) we have

P (y) ∼ e−KS(y). Note that P (y) is the contribution to
the QSD corresponding to an inactive promoter. A sim-
ilar contribution from the active promoter can be shown
to also satisfy Q(y) ∼ e−KS(y) using (2). Thus, the pro-
tein copy number QSD, Pn, starting from the vicinity of
the off state, reads Pn ≡ P(y) = P (y)+Q(y) ∼ e−KS(y).
Expanding S(y) in the vicinity of yoff = Noff/K up to
second order, and demanding that the Gaussian integra-
tion be normalized to 1, the normalized P(y) satisfies

P(y) '
√
S′′(yoff )/(2πK) e−K[S(y)−S(yoff )]. (7)

Note that the preexponent entering (7) holds only in
the Gaussian regime of the PDF, whose width is σ =√
K/S′′(yoff ). One can check that the on state QSD

coincides with (7) upon replacing yoff→yon. The Gaus-
sian normalization above is valid when the QSD’s width
is sufficiently small compared to Noff for the off state
(and Non−N0 for the on state). From (7) one can read-
ily find the joint QSD, Pm,n = Pm|nPn, where Pm|n, the
probability to find m mRNA molecules given n proteins,
can be found using standard techniques [12]. Given Pm,n,
the mRNA QSD satisfies Pm =

∑
n Pm,n.

Our result (7) can be compared to that of Ref. [12] e.g.
for the one-state model, where the promoter is always
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FIG. 3: (Color online) (a) MST τoff→on as a function of b for
n50 =720. WKB result (8) with numerical preexponent (solid)
and MC simulations (×). (b) τon→off as a function of n50 for
b= 15. Other parameters are h= 2, K = ab= 2400, kmin

0 =
kmin
1 =a/100, kmax

0 =kmin
1 =a and γ=50. Preexponents were

17.8 (a) and 4.8 (b). Also shown are the MSTs from MC
simulations of protein burst models with constant (©) and
geometrically distributed (�) burst sizes. Insets: WKB result
without (dashed) and with (solid) numerical preexponent.

active. Putting f̃(y) = 1 and g̃(y) = 0, the momentum
becomes py(y)=ln[((1+b)y)/(1+by))] so that Eq. (7) sim-
plifies to Pn = [2πab(b+1)]−1/2a−an−n(a+n)a+nbn(1+
b)−(n+a). This result coincides with the n � 1 asymp-
tote of Eq. (9) in [12] by using the Stirling formula. As
expected, the prefactor here coincides with that of [12]
only in the Gaussian region of the fixed point n=ab.

To check our theoretical predictions for generic non-
constant f(n) and g(n), we performed Monte Carlo (MC)
simulations using the Gillespie algorithm [21]. An exam-
ple of a typical MC run can be seen in Fig. 1(c). In
Fig. 2(a,b) we compare the WKB prediction (where the
action is found by numerical integration) for the protein
and mRNA QSDs for the off (a) and the on (b) states,
with MC simulations and results of Ref. [12]. The lat-
ter are expected to be valid only in the limit of h � 1
(when the feedback functions become approximately step
functions). In panels (c,d) we show the Kullback-Leibler

(KL) divergence
∑
P

(1)
n ln(P

(1)
n /P

(2)
n ) (a measure of the

difference between PDFs P
(1)
n and P

(2)
n ) between WKB

result (7) and MC simulations for various parameters.
Now, the mean switching time (MST) τoff→on can be

readily inferred from QSD (7): it is the inverse of the
flux through the repelling fixed point y0 =N0/K [13, 14].
The logarithm of the MST is proportional to the effective
entropy barrier between the attracting and repelling fixed
points ∆Soff = S(y0)− S(yoff ). Therefore, we have

ln τoff→on = K [∆Soff +O (1/K, 1/γ)] , (8)

with τon→off the same using ∆Son = S(y0) − S(yon).
Note, that while the prefactor of the MST is unknown,
based on single-species calculations it is expected to be
O(1) and independent of K [16]. Eq. (8) indicates the
WKB formalism is valid for K∆S � 1 (see Fig. 2 insets).

In Fig. 3 we compare the theoretical MST prediction
to MC simulations. Panel (a) compares τoff→on vs b; a
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FIG. 4: (Color online) (a) τon→off/τoff→on (on state relative
stability) vs h and α, for kmin

0 = kmin
1 = aα/100, kmax

0 =
kmin
1 =aα, K=2400, b=15, and n50 =950. (b) MSTs τon→off

(dashed), τoff→on (dash-dotted), and their ratio (solid).

nontrivial super-exponential dependence is observed. It
is also shown that the functional dependence of τoff→on

is excellently captured by (8) with a numerical slowly-
varying preexponent. Panel (b) compares τon→off vs n50,
and again the functional dependence is excellently cap-
tured by the theoretical MST. Fig. 3 also shows that the
mRNA noise can be accounted for when γ � 1 by assum-
ing geometrically distributed protein births, while using
a constant burst size yields markedly different results.

Promoter fluctuations are known to have a substan-
tial impact on the PDFs and switching times of genetic
switches [4, 5]. We used Eq. (8) to study switch stability
with respect to the promoter transition dynamics. Mul-
tiplying kon and koff by α we control the frequency and
duration of mRNA bursts in the off state and pauses in
the on state, while leaving unchanged the relative proba-
bility of the promoter to be in the active/inactive states.

By increasing α the duration of bursts and pauses di-
minishes, large fluctuations become rarified, and crossing
the entropic barrier becomes harder (see also [5]). The
rate of increase of the entropic barrier, however, differs
for the off → on and on→ off transitions, as seen in
Fig. 4. For small h the rate of increase of the on→ off
entropic barrier exceeds that of off → on for the en-
tire range of α, thereby amplifying the on state stability.
However, this is not the case for higher h, which gives
rise to a non-monotonic stability curve for the on state
(see panels b in Fig. 4). These results stress the role of
promoter kinetics, not just thermodynamics, for genetic
switches, which are inherently far from equilibrium.

We have presented an analytical framework for the ac-
curate analysis of genetic switches while explicitly ac-
counting for mRNA noise. This framework is expected to
be useful for studying diverse genetic circuits character-
ized by metastable switching, e.g., those with additional
promoter states such as DNA looping or nucleosome re-

modeling. In particular, it can be used to help elucidate
the underlying regulatory circuits responsible for pheno-
typical changes as a result of switching.
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