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We use spin-resolved electron tunneling to study the exchange field in the Al component of EuS/Al
bilayers, in both the superconducting and normal-state phases of the Al. Contrary to expectation,
we show that the exchange field, H.;, is a non-linear function of applied field, even in applied
fields that are well beyond the EuS coercive field. Furthermore the magnitude H., is unaffected
by the superconducting phase. In addition, H., decreases significantly with increasing temperature
in the temperature range of 0.1 - 1 K. We discuss these results in the context of recent theories of
generalized spin-dependent boundary conditions at a superconductor/ferromagnet interface.

PACS numbers: 74.50.4+r, 74.45.4-c, 75.70.Ak, 85.75.-d

Owing to their different symmetries, itinerant ferro-
magnetic (FM) order and spin-singlet superconducting
(SC) order are generally mutually exclusive. With rare
exception, nature does not allow ferromagnetic order to
coexist with BCS superconductivity [I]. This immiscibil-
ity can, however, lead to interesting effects in the vicinity
of a FM/SC interface, as electrons moving from one re-
gion to the other try to accommodate the differing order
parameters. Over the last decade significant progress has
been made in understanding the nature of the SC order
parameter in the proximity of a FM/SC interface [2H5].
In fact, much of the research on FM/SC structures has
focused on the evanescent SC condensate residing on the
FM side of the interface in properly prepared bilayers
[4, [7H9]. Remarkably, not only can SC Cooper pairs ex-
ist in the FM layer, but the exchange field in the FM
induces a triplet component to the SC wavefunction [4].
This results in oscillations in the SC order parameter
[5, 7, 8] that are reminiscent of the order parameter mod-
ulations predicted by Fulde and Ferrel [I0], and Larkin
and Ovchinnikov [IT] for a BCS superconductor in a crit-
ical Zeeman field. In the present Letter, we present the
results of a detailed study of the exchange field induced in
the SC side of a FM/SC bilayer. We show this proximity-
induced exchange field is not static, but has unexpected
temperature and applied-field dependencies that are not
attributable to the temperature and/or field dependence
of the FM magnetization.

Since we are primarily interested in the behavior of
the exchange field induced in the SC layer, we have cho-
sen an insulating material for the FM layer, EuS [12].
This greatly simplifies the interpretation of the data since
electrons from the SC only enter the FM via evanes-
cent wavefunctions. For the superconductor we chose
Al since it has a very low spin-orbit scattering rate and
its spin-paramagnetic phase diagram is well understood
[13]. The FM/SC bilayers were fabricated by first de-
positing a 5 nm-thick EuS film via e-beam evaporation
onto fire-polished glass at 84 K. Then a 2.4 nm thick Al

film was deposited on top of the EuS film. The deposi-
tions were made at a rate of ~ 1 nm/s and ~ 0.1 nm/s,
respectively, in a typical vacuum of < 3 x 107 Torr. The
samples were then exposed to air to form a native oxide
on the Al surface. Finally, the bilayers where mechan-
ically trimmed and a 10 nm-thick non-superconducting
Al alloy counter-electrode (Al,s) was deposited, with the
native oxide serving as the tunnel barrier. The junction
area was about 1 mmx1 mm, while the junction resis-
tance ranged from 15-100 k€2 depending on exposure time
and other factors. Only junctions with resistances much
greater than that of the films were used. At low temper-
ature the tunneling conductance is proportional to the
quasiparticle density of states (DOS) [I4]. Measurements
of resistance and tunneling were carried out on an Oxford
dilution refrigerator using a standard ac four-probe tech-
nique. Magnetic fields of up to 9 T were applied using
a superconducting solenoid. A mechanical rotator was
employed to orient the sample in situ with a precision of
~0.1°.

The exchange field in both the SC and normal phases of
the bilayers can be obtained via spin-resolved tunneling
DOS measurements. For samples in the SC phase, we uti-
lize the quasiparticle tunneling technique of Tedrow and
Meservey [15]. This technique exploits the fact that the
internal field in the SC film induces a Zeeman splitting
of the DOS spectrum, resulting in the BCS coherence
peaks being split into spin-up and spin-down bands. The
separation of the bands, AV = FE, /e (with E, =2upH,
the Zeeman energy), is a direct measure of the effective
Zeeman field
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where H,p, is the applied field, H., the exchange field
induced by the EuS interface, and G% is the effec-
tive [I6] antisymmetric Fermi liquid parameter. The
latter accounts for the renormalization of the electron
spin by interactions. At low temperatures where T < T,



G% ~ 0, whereas in the normal-state G2 = G%, with
G% ~ 0.16 — 0.26 [16].

In the upper panel of Fig. [T we plot the 80 mK tunnel-
ing conductance of an EuS/Al-AlO,-Al,, s tunnel junction
in an applied parallel magnetic field of Hgp, = 0.03 T.
The Zeeman splitting of the BCS DOS spectrum is clearly
evident. From this splitting we obtain H, ~ 4.4 T. When
the Zeeman energy is of the order of the superconducting
gap A, ~ 0.4 mV the film undergoes a first-order tran-
sition to the normal state at the analog of the Clogston-
Chandrasekhar critical field [17],
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The parallel critical field in pristine Al films of compa-
rable thickness to ones used in this study is HS ~ 6 T
[13]. For the film in Fig. [1| the transition to the normal-
state occurred at an applied field of only ~ 0.1 T. This is
consistent with the tunneling data and indicates that the
Zeeman field of the Al film was dominated by exchange.
The magnitude of H., obtained from data such as that in
Fig. |1} is comparable to that reported by Hao et al. who
measured the magnitude of the exchange field as a func-
tion of Al thickness in the SC phase of EuS/Al bilayers
[18]. Since the technique used in those early experiments
required that the films be in the SC phase, the exchange
fields could only be measured over a very narrow range
of applied fields. As we discuss in detail below, by ex-
tending the measurements into the normal phase of the
bilayers we are able to measure the exchange field over a
much broader range of applied fields.

In the lower panel of Fig.|l| we plot the tunneling spec-
tra of the same bilayer in an applied field of Hp, = 0.1 T,
which produced a Zeeman field exceeding HS . The cen-
tral dip in this normal-state spectrum is the electron-
electron interaction zero-bias anomaly, which is indepen-
dent of field [19] [20]. The satellite features represent the
pairing resonance (PR), from which we can extract the
Zeeman field [21, 22]. The PR is spin-assigned as shown
by the arrows in the figure. The energy of the resonance
depends on the field via the Zeeman energy [21],
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The positions of the resonances, as shown in the lower
panel of Fig. [l are obtained by first subtracting off the
zero-bias anomaly background and then fitting the reso-
nance profile, as described elsewhere [2I]. We then use
Eq. to extract the Zeeman field.

In Fig. [2] we plot H, as a function of a parallel field
H,pp at 80 mK and 400 mK for two different samples
made under identical conditions. The 80 mK data set
was obtained from both SC and normal-state tunnel-
ing spectra. This particular sample underwent a first-
order transition to the normal-state at an applied field
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FIG. 1: A: Tunneling DOS spectrum in an applied parallel
field of 0.03 T. The Zeeman splitting of the coherence peaks
gives a direct measure of the Zeeman field. The red arrows
denote the spin assignment of the coherence peaks. B: Pauli-
limited normal state in an applied parallel field of 0.1 T, where
only the pairing resonance and the zero bias anomaly remain.
The Zeeman field can be extracted from the resonance energy,
V*, via Eq. . The red arrows denote the spin assignments
of the occupied and unoccupied resonances.

of ~ 0.1 T. All of the 400 mK data points were obtained
from normal-state spectra, since for this film H., > H¢
in zero applied field. There are several noteworthy fea-
tures of this data. The first is that rather high internal
fields can be achieved by applying fields of a few hundred
Gauss. The second is that there is a non-linear increase
in H, between 0 and 2 T. We ascribe this behavior to a
non-linear dependence of the exchange field Hc, on Hgpyp,
as discussed below. Finally H, increases linearly in ap-
plied fields above 2 T, indicating a saturation of H., at
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FIG. 2: Zeeman field [Eq. (I)] as a function of applied field.
The dashed lines represent linear fits to the data above 2 T.

high fields. The slope is determined by the Fermi liquid
parameter G%; as in Eq. . We can therefore obtain G%;
by fitting the data above 2 T to straight lines, as shown
in Fig. 2| We find G} = 0.19, 0.18 for the 80 mK and
400 mK data sets, respectively, in good agreement with
previously measured values in Al films [2]].

As a check of the consistency of the above analysis, we
show in the inset of Fig. |2 the Zeeman field vs. Hgpp
at 80 mK for low applied fields. The arrow points to
the discontinuity in the Zeeman field at the critical field
H¢. The discontinuity is caused by the jump of G% from
its SC value (=~ 0) to its normal-state one. Indeed, H,
multiplied by 1+GY%; evolves smoothly with applied field.

The exchange field can be extracted from the data in
Fig. [2| by inverting Eq. . In Fig. 3| we show the re-
sulting H,, as a function of applied field at 80 mK and
400 mK. The arrow depicts the critical field transition in
the 80 mK data set. Note that, below 2 T, H., grows
non-linearly with applied field, appearing to increase log-
arithmically by a factor of 2 between 0.01 T and 1 T. Also
there is no obvious discontinuity in H,, at the first-order
transition. Similar enhancements in the exchange field
with applied field were reported in both EuO/Al [23] and
EuS/Al [18] bilayers. (Those measurements, however,
were limited to the SC state, while here we are present-
ing results for the normal state as well.) This nonlinear
behavior was attributed to the alignment of the ferro-
magnet domains by the applied field [I5]. The authors
argued that if the FM domains are randomly oriented on
length scales on the order of the superconducting coher-
ence length, then the average exchange field, as experi-
enced by the SC, is lowered. In this scenario the applied
field simply serves to align the domains. In order to ex-
plore this as a mechanism for the behavior in Fig. |3 we
have directly measured the magnetization of the EuS/Al
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FIG. 3: Semi-log plot of the EuS exchange field as a function
of parallel applied field. The arrow denotes the superconduct-
ing critical field for the 80 mK data. All of the 400 mK were
obtained from normal-state spectra.

bilayers using a Quantum Design MPMS SQUID magne-
tometer.

In Fig. [4 we show the longitudinal magnetization, with
field oriented along the film plane, of a stack of 10 EuS/Al
bilayers at 2 K. The background magnetization of the
glass slides was measured separately and subtracted from
the raw data. Note that the magnetization loop is very
sharp with a coercive field below 100 G. The saturation
magnetization and Curie temperature are in good agree-
ment with those of bulk EuS [12]. We find no evidence
that the ferromagnetic behavior of the EuS has been sig-
nificantly affected by its contact with the Al layer, as was
conjectured in Ref. 24l This suggests that observed in-
crease in H., in applied fields between 0.01 T and 2 T
is not an artifact of domain alignment but is, in fact, an
intrinsic effect. Interestingly, H., also exhibits a signif-
icant temperature dependence below 1 K. In Fig. |5| we
plot the exchange field as a function of temperature in
the presence of a parallel applied-field of H,,, = 0.05 T.
Note that the H,, decreases by about 10% between 200
and 800 mK. The magnetization of the EuS below 2 K
(see upper inset of Fig. [4]) is only weakly temperature
dependent and cannot explain the decrease H,., with in-
creasing temperature. This suggest that the behavior in
Fig. [f] is a conduction-spin relaxation effect associated
with thermally activated spin-flip scattering processes.

In the diffusive regime relevant to our Al films, the
spin-dependent boundary conditions described in Refs. [8
and [9 should produce an exchange field that is deter-
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FIG. 4: Magnetization of a 5 nm-thick EuS film capped with
3 nm of Al. The external field was applied in the film plane.
Lower inset is an expanded plot of the hysteresis loop. Note
that the coercive field is less than 0.01 T. The upper inset is
the temperature dependence of the magnetization in a 0.07 T
parallel field. This data was taken after cycling the applied
field to 5 T and back at 2 K. The dashed line in this inset is
a polynomial fit to the data below 5 K.
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FIG. 5: Temperature dependence of the exchange field in a

parallel applied field of 0.05 T.
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mined solely by the properties of the EuS/Al interface
and the normal-state properties of the Al films, such as
their thickness and conductance. Consequently, the ex-
change field should, in fact, be insensitive to the phase of
the Al film, which is the case for the EuS/Al bilayers in
this study. Preliminary measurements show that a very
similar, applied field-dependent, exchange field arises in
the Be component of EuS/Be bilayers [25]. In fact, this
exchange field is evident even in samples with Be lay-
ers of sufficiently high resistance so as to be in the non-
superconducting correlated insulator phase [26].

All of the current theoretical models treat the exchange
field within the context of a superconducting ground
state, and none of them can account for the fact that the
exchange field is an intrinsic function of the applied field.
If the underlying mechanism of this field dependence can
be determined, then one would hope that the mecha-
nism could be exploited in order to control the magnitude
of the exchange field with substantially smaller external
fields than used in this study. Or, perhaps, one may be
able to modulate the interface exchange coupling with
an external electric field via a gate. In either case, the
strategy is to use a small external field to control a large
exchange field in order to realize a device, such as super-
conducting switch or a tunable polarized current source
[21.
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