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We propose a free-energy based Monte-Carlo method to measure the volume of potential-energy
basins in configuration space. Using this approach we can estimate the number of distinct potential-
energy minima, even when this number is much too large to be sampled directly. We validate our
approach by comparing our results with the direct enumeration of distinct jammed states in small
packings of frictionless spheres. We find that the entropy of distinct packings is extensive and that
the entropy of distinct hard-sphere packings must have a maximum as a function of packing fraction.
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When many equal-sized spheres are poured into a con-
tainer, the spheres are unlikely to end up arranged in a
periodic lattice. This observation reflects the fact that
S0, the entropy of distinct disordered packings that are
mechanically stable, is very large compared to the corre-
sponding entropy of distinct ordered packings. The fact
that S0 is so large has important consequences for the
disordered packings such as granular materials [1–3].

There is a natural connection between hard-sphere
packings and glasses [4], whose potential energy land-
scapes have many minima (inherent structures [5]), cor-
responding to mechanically-stable states. These minima
have been argued to be relevant for our understanding
of the glass transition [3, 6]. The number of such min-
ima has been calculated from replica theory [3, 7, 8]. In
calculating this number numerically, however, a protocol
must always be used to generate energy minima. Typ-
ical protocols produce states with probabilities that are
not known; for example, when the entropy of minima
is calculated from finite-temperature simulations [9–12],
one must assume that the temperature is low enough so
that the system crosses no barriers. Similarly, when the
entropy is calculated from algorithms that involve com-
pression or dilation of the system [13–15], it may depend–
even under ideal conditions–on the algorithm used. As
a result, it is difficult to count the number of distinct
mechanically-stable states, with states weighted equally.

In this letter we report a general computational
method to measure the volume of a basin of attraction
associated with an arbitrary potential energy minimum.
This is the key to calculating the entropy of distinct min-
ima for soft spheres because there is a protocol that gen-
erates minima weighted by their basin volumes [4]. In
this “basin” protocol, states in configurational space are
selected at random and each one is quenched to its near-
est energy minimum [4]. By using this protocol and cor-
recting for the weighting by calculating the basin vol-
ume, we can obtain the unweighted entropy of distinct
mechanically-stable states (packings) for soft spheres. Fi-
nally, the analogous entropy for hard-sphere packings can

be obtained from the density of soft-sphere packings at
zero pressure. We find that there must be a maximum in
the entropy of distinct hard-sphere packings, at least for
small systems, in agreement with earlier results obtained
by direct enumeration [15].
To explain our approach, we first define the volume of

a basin for a packing of soft spheres as

vb =

∫

d~RG(~R, ~R0), (1)

where G(~R, ~R0) = 1 if, upon energy minimization, any

point ~R in configuration space ends up at ~R0, the position
of the local potential energy minimum, and 0 otherwise.
The integral is over the whole configuration space. We
view the (hyper) volume associated with a given basin
as a partition function and hence compute its value by
a suitable free-energy calculation method. Here, we will
use the standard “Einstein” method [16] and compute the
basin free energy by comparing it to the free energy of

a system confined near the minimum ~R0 by a harmonic
potential with spring constant k. For arbitrary k, the
canonical partition function of the system is:

Q(k) =

∫

d~RG(~R, ~R0)exp
(

−βku2/2
)

, (2)

where u = |~R− ~R0| is the distance between ~R and ~R0, and

β ≡ (kBT )
−1 with kB the Boltzmann constant. G(~R, ~R0)

in Eq. (2) can be rewritten as exp(−βU), where U = 0

when ~R is in the basin, and ∞ otherwise. Obviously,
vb = Q(0). Without loss of generality, we choose β = 1.
The free energy of this system is F (k) = −lnQ(k) and

dF (k)
dk = 〈u2/2〉k, where 〈...〉k denotes a canonical ensem-

ble average at the spring constant k. This average can
be sampled in a standard Monte-Carlo (MC) simulation.
The change in free energy upon switching on a spring
constant km is

F (km) = F (0) +

∫ km

0

〈u2/2〉kdk, (3)



2

where km is chosen sufficiently large that the confin-
ing potential has no influence. In that case F (km)
is known analytically and Eq. (3) allows us to com-
pute F (0) and from that the volume of the basin, as

vb(~R0) = exp(−F (0)). In practice, we choose a max-
imum km such that most (in our case > 90%) of the

associated Gaussian distribution is within basin ~R0. One
then corrects the Einstein crystal result for the confining
effect of the basin: F (km) = − dN

2 ln (2π/km)−lnf , where
d is the dimension of space, N is the number of particles
in the system, and f is the fraction of the associated

Gaussian distribution within basin ~R0.
Given the basin volume, we can calculate the entropy

of distinct mechanically-stable minima. We include in
our analysis only energy minima that are mechanically-
stable (jammed). The fraction of the total configuration
space, Vtot, occupied by basins of jammed states, fj, is
computed [4] by quenching randomly selected points in
configuration space to the nearest energy minimum and
calculating the fraction that end up in jammed states.
The volume of configuration space at packing fraction φ
occupied by jammed basins is Vc(φ) = fj(φ)Vtot.
As pointed out by Speedy in a slightly different con-

text [17], the total configuration space can be uniquely
decomposed into distinct basins and hence its volume is
simply the sum of the volumes of the constituent basins.
Thus,

Vc(φ) =

Ωc
∑

i=1

vb = Ωc

(

1

Ωc

Ωc
∑

i=1

vb,i

)

= Ωc 〈vb〉 . (4)

By sampling the basin volume to obtain 〈vb〉, we can
therefore compute Ωc, the total number of distinct
jammed states.
Note that “computing the average basin volume”

sounds simpler than it is because the probability to sam-
ple a given basin is proportional to the basin volume
itself. We correct for this bias by dividing by the basin
volume. However, if a substantial fraction of all distinct
basins together occupy a negligible volume of configu-
ration space, they will not be sampled at all. For this
reason, it is imperative to check this method for small
systems for which all distinct basins can be identified.
To test the method, we consider N disks in a square

box of length L with periodic boundary conditions.
Disks i and j interact via a “harmonic” repulsion Vij =

ǫ (1− rij/σij)
2
/2 when the distance between their cen-

ters of mass, rij is smaller than the sum of their radii,
σij = (σi + σj) /2, and zero otherwise. In order to avoid
crystallization, we use a 50 : 50 binary mixture of disks.
The diameter ratio of the large disks to the small ones
is 1.4. We choose units where the length of the simula-
tion box is L = 1 and the characteristic energy of the
interaction is ǫ = 1. For this system, the total volume of
configuration space occupied by distinct basins is

Vtot =
LdN

[(N/2)!]2
(5)
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FIG. 1: (color online) Probability of finding a given minimum
calculated in two ways: from direct enumeration, Pd, and
from MC calculations of the basin volume relative to the total
volume of configuration space, vb/Vtot. Included are systems
at packing fraction φ = 0.9 of N = 8 (black circles), 10 (red
squares), 12 (blue diamonds), 14 (green upward triangles),
and 16 (orange pluses) particles. For N = 8, 10, and 12,
all distinct states are shown, while for N = 14 and 16 only
the first 1000 states are shown. The dashed black line is
Pd = vb/Vtot. Inset: the volumes of all distinct basins for
N = 8, calculated by steepest descent (vSD

b , red triangles) and
conjugate gradient (vCG

b , black squares) compared to volumes
vb calculated by the L-BFGS algorithm. The dashed black

line is v
CG(SD)
b

= vb.

where [(N/2)!]
2
accounts for disk indistinguishability.

The direct calculation of the integral on the right hand
side of Eq. (3) is computationally expensive because the
acceptance step of every MC move requires an energy
minimization (to see if the system has left the original
basin). Otherwise, the calculations are exactly as in
Ref. [16]. In what follows, we use Gauss-Lobatto quadra-
ture to evaluate Eq. (3), changing variables so that the
integrand varies only weakly over the integration inter-
val to improve accuracy (see [16]). We verified that the
integrand in the Gauss-Lobatto quadrature indeed varies
smoothly with increasing force constant k of the har-
monic spring.
As the potential energy has to be minimized at ev-

ery step, the efficiency of the energy minimization rou-
tine becomes important. From any given starting point,
the routine should find the minimum corresponding to
a steepest-descent (SD) search. Only the SD algorithm
itself is guaranteed to do that, but this algorithm is not
efficient at finding the minimum. In what follows, we
make use of the L-BFGS minimization routine [18] as
it is much (an order of magnitude) faster. We find that
the L-BFGS, conjugate gradient (CG) and SD algorithms
yield very similar results for basin volumes and volume
distributions for N = 8, as shown in the inset to Fig. 1.
However, in general it may be safer to use SD, in spite of
its higher computational cost.
The first step in the computation of a basin volume is
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FIG. 2: (color online) Cumulative distribution of the basin
volume, I( v

〈v〉
) for binary mixtures with N = 10 (black cir-

cles), 12 (red squares), 14 (blue diamonds), and 16 (purple
triangles), all at φ = 0.9. The orange solid curve shows the
quasi log-normal fit to the N = 16 data according to Eq. (6)
with a = 0.23, b = 0.60, and c = 1.04.

to find a potential energy minimum. To do this, we gen-
erate a random point in the configuration space of the
system under study (a dN -dimensional hypercube for a
system of N spheres in d spatial dimensions). Starting
from this initial coordinate, the potential energy of the

system is minimized to find the coordinate ~R0 that cor-
responds to the (local) potential minimum [4]. Since the
probability of sampling a given minimum is proportional
to the volume of its “catchment basin”, we can deduce the
volumes of the individual basins from the frequency with
which they are sampled, for systems sufficiently small
so that all basins can be sampled in a simulation. Thus,
this brute-force approach can be used to validate the free-
energy based volume calculation.

We used the two approaches mentioned above to com-
pute the number of distinct catchment basins, Ωc, of the
binary disk mixture at a packing fraction φ = 0.9 and
system sizes N ∈ [8, 16]. For these small systems, we
can find effectively all distinct states by sampling up to
Nt = 108 uncorrelated initial configurations [15]. During
the runs, we keep track of ns(nt), the number of distinct
basins sampled after nt randomly chosen initial configu-
rations. As shown in Ref. [15], ns saturates for large nt,
suggesting that we have found all distinct basins or, more
precisely: the combined volume of all basins not sampled
is less than O(n−1

t ). The fractional volume occupied by
an individual basin i is then given by Pd(i) ≡ n(i)/Nt,
where n(i) denotes the number of times that we have
sampled the same basin i after Nt trials.

For each distinct basin, we also calculate the basin vol-
ume vb(i) using the free-energy method described above.
The fractional volume occupied by distinct basin i is
given by vb(i)/Vtot, where Vtot is given by Eq. (5).

Fig. 1 shows the correlation between Pd and vb/Vtot

for each of the distinct basins i obtained from the direct
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FIG. 3: (color online) Configurational entropy Sc/kB as a
function (a) system sizeN at φ = 0.9, and (b) packing fraction
φ at N = 16. The red line in (a) is the linear fit to the data:
Sc = 0.83N − 2.48.

enumeration. The dashed line is not a fit but corresponds
to the relation Pd = vb/Vtot. Thus, Fig. 1 shows that
the free-energy calculation of the basin volumes works
very well, even though the shapes of the high-dimensional
basins are very complicated.
It is straightforward to calculate the average basin vol-

ume 〈vb〉 when all the distinct basins are known. But for
larger systems for which only a small subset of basins can
be identified, 〈vb〉 can be calculated only if the distribu-

tion of basin volumes, P (vb), scales in a known fashion
with system size. Fig. 2 shows the cumulative distribu-
tion of the basin volumes (I( vb

〈vb〉
)). For larger N , the

cumulative distribution P (vb) is well represented by

I (x) =
{erf [aln (x) + b] + 1}c

2
, (6)

where x = vb
〈vb〉

, while a, b, and c are adjustable param-

eters. As N increases, a and c decrease slightly, while b
increases. Specifically, c → 1, suggesting that the distri-
bution P (vb)becomes log-normal for larger systems.
This result is perhaps not surprising if one expects the

distribution of the entropy of states within a basin (the
logarithm of the basin volume) to be Gaussian in the
thermodynamic limit. If this is indeed the case, then one
can compute the average basin volume (and hence the
total number of distinct basins) from a simulation that
samples only a fraction of all basins.
Once I(vb) has been obtained for a given system size,

the configurational entropy Sc follows, using Eq. (4).
Fig. 3(a) shows that the configurational entropy Sc =
kB lnΩc is extensive, i.e. it scales linearly with N . This
is expected for large systems [5, 19] but not necessarily
for the sizes studied here. Fig. 3(b) shows the variation
of Sc with the packing fraction φ. The number of distinct
states increases as φ decreases, as expected. Note that
Sc(φ) is the configurational entropy of distinct jammed
energy minima in soft sphere packings, or equivalently,
the entropy of distinct mechanically-stable packings.
However, the entropy of distinct mechanically-stable

packings of hard spheres, S0(φ), is not the same as that
for soft spheres Sc(φ). To obtain the former quantity,
we must look only at soft-sphere packings that are at
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FIG. 4: Entropy of distinct minima at packing fraction φ
and pressure p, Sc(φ, p)/kB = lnΩ(φ, p), where Ω(φ, p) is the
density of states between p and p+dp. Here, Sc(φ, p) is shown
for systems of N = 16 particles at φ = 0.82 (solid), 0.83
(dashed), 0.84 (dot-dashed) and 0.85 (dotted). Sc reaches a
well-defined value as p → 0.

the jamming threshold (i.e. at zero pressure, p = 0)
at each packing fraction [4]. Fortunately, we can calcu-
late this directly from the sampled soft-sphere minima
without introducing a protocol for bringing the system
to p = 0 that might bias the weightings of the result-
ing states [15]. We calculate the distribution P (φ, p)
of basins whose minima have pressure p at φ and use
the average basin volume, 〈vb〉, to obtain the density
of states of distinct energy minima, Ω(φ, p), with pres-
sures between p and p + dp, via Eq. (4). The en-

tropy of distinct jammed hard-sphere packings is then
S0(φ) = Sc(φ, p = 0) = kB lnΩ(φ, p = 0).

Fig. 4 shows that S0(φ) increases with decreasing φ
over the range studied. However, we also know that S0

must vanish at sufficiently small φ. Thus, S0 must have
a maximum, in agreement with earlier estimates [15] and
theoretical predictions [8]. It would be interesting to ex-
plore the connection between this maximum and the ran-
dom close-packing density in large systems [20].

In summary, the free-energy method proposed here al-
lows us to compute the volume of individual basins in
the energy landscape of a many-particle system. This,
in itself, is an extremely useful result. We also find that
from the distribution of basin volumes we can obtain the
number of distinct energy minima (the number of distinct
jammed packings). Here, we have tested our method for
small systems where all basins can be identified by brute
force, but our method can be applied to far larger sys-
tems, where direct enumeration is impossible. In prac-
tice, the reliability of this approach depends strongly on
the existence of a universal form for the functional form of
the distribution basin volumes. Further tests are needed,
but our results suggest that a log-normal form may be
appropriate for larger system sizes.
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