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Rigorous upper limits on the vertical heat transport in two dimensional Rayleigh-Bénard convec-
tion between stress-free isothermal boundaries are derived from the Boussinesq approximation of
the Navier-Stokes equations. The Nusselt number Nu is bounded in terms of the Rayleigh number
Ra according to Nu ≤ 0.2891 Ra5/12 uniformly in the Prandtl number Pr. This Nusselt number
scaling challenges some theoretical arguments regarding the asymptotic high Rayleigh number heat
transport by turbulent convection.
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Rayleigh-Bénard convection is the buoyancy-driven
flow of a fluid heated from below and cooled from above.
It is important for a variety of systems in the engi-
neering, geophysical, and astrophysical sciences, and it
has long served as a fundamental paradigm of nonlin-
ear science, chaos, and pattern formation. Indeed, the
Boussinesq approximation to the Navier-Stokes equa-
tions with the boundary conditions analyzed in this paper
was Rayleigh’s original model for calculating conditions
for onset [1], it is the basis of the Lorenz equations [2],
and it formed the foundation of developments in the mod-
ern mathematical theory of amplitude [3] and modulation
[4] equations. Most recently Rayleigh-Bénard convection
has been the focus of a large body of experimental, com-
putational, theoretical, and mathematical research aimed
at characterizing the fully turbulent dynamics for appli-
cation in geophysical and astrophysical regimes [5].

Convective fluid flow increases vertical heat transport
beyond the purely conductive flux. The dimensionless
enhancement factor, the Nusselt number Nu, is both of
fundamental interest for applications and the natural and
widely recognized measure of the intensity and effective-
ness of the motion. The most basic question for Rayleigh-
Bénard convection is the dependence of Nu on (i) the
strength of the thermal forcing, commonly expressed in
terms of a dimensionless Rayleigh number Ra, (ii) the
material properties of the fluid, which within the Boussi-
nesq approximation is set by the dimensionless Prandtl
number Pr, the ratio of the fluid’s momentum and ther-
mal diffusion coefficients, (iii) the geometry, typically the
aspect ratio of the container, and (iv) the boundary con-
ditions. The connection between these variables is gen-
erally complex and often not even unique, but in the
“ultimate” high Rayleigh number regime when the flow
is turbulent, the presumed functional relation between
the Nu, Pr, and Ra is Nu ∼ Prγ Raβ .

Experiments and simulations with Pr = O(1) and
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no-slip boundary conditions suggest a scaling exponent
0.27 . β . 0.40 at the highest available Ra [5, 6]. Vari-
ous theories suggest (modulo possible logarithmic correc-

tions) that Nu ∼ Pr1/2 Ra1/2 as Ra→∞ [7–9]. Rigorous
analyses of the Boussinesq model with no-slip velocity
and isothermal (fixed temperature) [10, 11] or fixed heat
flux [12] or mixed temperature [13] boundary conditions

yield upper bounds of the form Nu ≤ cRa1/2 with pref-
actors 0 < c < ∞ independent of Pr, so β = 1

2 and

γ = 1
2 cannot both hold for very large Pr. The Nu-Ra

relation is certainly different at Pr = ∞ where theory
suggests [14] and analysis proves [15] (modulo possible

logarithmic corrections) that Nu . Ra1/3.

Two dimensional Rayleigh-Bénard convection displays
many of the physical and turbulent transport features of
three dimensional convection and has long been utilized
as a test-bed for theoretical concepts [16, 17]. The ef-
fect of free-slip (no-stress) velocity boundary conditions
on developed turbulent convection has largely been unex-
plored although we note that the rigorous scaling bound
reported here was anticipated by recent numerical and
perturbative investigations of transport limits for finite
[18] and infinite [19, 20] Prandtl numbers. This letter
bridges that gap with a proof that Nu ≤ 0.2891Ra5/12

uniformly in 0 < Pr ≤ ∞ for the Boussinesq model
in two spatial dimensions with fixed temperature and
free-slip boundaries. This result refutes predictions of
a Nu ∼ Ra1/2 ultimate regime insofar as the theoreti-
cal arguments do not refer specifically to the boundary
conditions or the spatial dimension. This issue is dis-
cussed further in the conclusion section at the end of
the paper. Meanwhile the proof of the bound is pre-
sented in sufficient detail immediately below for moti-
vated readers to reproduce the calculation in its entirety.
The key new idea used to derive the result emerged from
intuition developed in numerical studies of upper bounds
[18, 19]: implement and exploit the bulk averaged en-
strophy balance available for two-dimensional flows with
free-slip boundaries to decrease the upper bound.

The dimensionless equations of motion for the Boussi-
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FIG. 1: Geometry for the 2d stress-free convection problem.
Boundary conditions for T , u, v, and the vorticity ω at the
isothermal no-slip vertical boundaries are shown. All these
variables as well as the pressure p are periodic in the horizon-
tal direction with period Γ.

nesq approximation are

1

Pr

(
∂u

∂t
+ u · ∇u

)
+∇p = ∇2u + Ra ĵ T, (1)

∇ · u = 0, (2)

∂T

∂t
+ u · ∇T = ∇2T, (3)

where the Prandtl number Pr = ν/κ is the ratio of the
fluid’s kinematic viscosity ν to its thermal diffusivity κ,
and the Rayleigh number Ra = g α∆T h3/ν κ where
g is the acceleration of gravity, α is the fluid’s ther-
mal expansion coefficient, and ∆T is the imposed tem-
perature drop across the layer of thickness h. Lengths
are measured in units of h, time in units of h2/κ, and
temperature in units of ∆T . The velocity vector field
u(x, y, t) = îu(x, y, t)+ĵv(x, y, t) satisfies no-penetration
and free-slip (stress-free) boundary conditions, and the
temperature field T (x, y, t) is isothermal on the vertical
boundaries at y = 0 and y = 1 as shown in Fig. 1.
All dependent variables, u, v, T , and the pressure field
p(x, y, t), are periodic in the horizontal direction x with
period Γ (the aspect ratio).

Taking the curl of (1) one obtains the evolution equa-
tion for the scalar vorticity ω = ∂v/∂x− ∂u/∂y,

1

Pr

(
∂ω

∂t
+ u · ∇ω

)
= ∇2ω + Ra

∂T

∂x
. (4)

The boundary conditions on u and v imply that ω = 0
on the vertical boundaries at y = 0 and y = 1.

The goal of the analysis is to use the equations of mo-
tion to derive upper bounds on the Nusselt number de-
fined as Nu = 1 + 〈vT 〉, where 〈·〉 represents the spatial
and long time average, in terms of Ra, Pr, and Γ. Toward
this end we utilize the background method [21], a math-
ematical device introduced by Hopf to establish the ex-
istence of weak solutions to the Navier-Stokes equations
in bounded domains [22]. For convection problems the
background method involves decomposing the tempera-
ture field into a background profile τ(y) which satisfies
the vertical boundary conditions (τ(0) = 1 and τ(1) = 0)

and a perturbation term θ(x, y, t) satisfying correspond-
ing homogeneous boundary conditions (θ(x, 0, t) = 0 =
θ(x, 1, t)) so that T (x, y, t) = τ(y) + θ(x, y, t) [11]. Im-
plementing this decomposition the temperature equation
(3) implies

∂θ

∂t
+ u · ∇θ = ∇2θ + τ ′′(y)− vτ ′(y). (5)

Then the equations of motion together with the boundary
conditions and the background decomposition imply

1

2 Pr

d

dt
‖u‖22 = −‖ω‖22 + Ra

∫
v θ dxdy (6)

1

2 Pr

d

dt
‖ω‖22 = −‖∇ω‖22 + Ra

∫
ω
∂θ

∂x
dxdy (7)

1

2

d

dt
‖θ‖22 = −‖∇θ‖22 −

∫ [
τ ′
∂θ

∂y
+ τ ′vθ

]
dxdy (8)

‖∇T‖22 = ‖∇θ‖22 + 2

∫
τ ′
∂θ

∂y
dxdy + ‖τ ′‖22 (9)

where ‖ · ‖2 is the L2 norm on the spatial domain and
the elementary identity ‖∇u‖22 = ‖ω‖22 was used in (6).

It is well-known that the equations of motion imply
Nu = 〈|∇T |2〉 [10, 11]. Thus, given coefficients a and
b with precise values to be determined, combining (6-9)
according to

b

Ra
× (6) +

a

Ra3/2
× (7) + 2× (8) + (9), (10)

applying the long time average—remarking that it can be
shown within the background method that the time aver-
ages of the time derivatives vanish [11, 21]—and dividing
by Γ, the Nusselt number is expressed

Nu =
1

1− b

(∫ 1

0

τ ′(y)2dy − b
)
− 1

1− b Q (11)

where

Q =

〈
|∇θ|2 +

a

Ra3/2
|∇ω|2 +

b

Ra
|ω|2

+ 2 τ ′ v θ +
a

Ra1/2
ω
∂θ

∂x

〉
. (12)

Hence if we can choose the background profile τ(y) and
coefficients a > 0 and 0 < b < 1 so that Q ≥ 0 for all
relevant θ, ω and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem
at hand we may use the piece-wise linear profile shown
in Fig. 2 where the thickness δ of the “boundary layers”
is to be determined as a function of Ra to satisfy Q ≥ 0.
With this choice of τ(y) the bound will be

Nu ≤ 1

2δ(1− b) −
b

1− b . (13)
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FIG. 2: Background profile with boundary layers of thickness
0 < δ ≤ 1

2
in which τ ′(y) = − 1

2δ
; τ ′(y) ≡ 0 for δ < y < 1 − δ.

Applying the horizontal Fourier transform and intro-
ducing the shorthand D = d

dy , it is evident that positivity

of Q is equivalent to the positivity of

Qk = ‖Dθ̂k‖2 + k2‖θ̂k‖2 +
a

Ra3/2
‖Dω̂k‖2

+
a

Ra3/2
k2‖ω̂k‖2 +

b

Ra
‖ω̂k‖2 (14)

+ Re

{
2

∫ 1

0

τ ′ v̂k θ̂
∗
kdy −

aik

Ra1/2

∫ 1

0

ω̂k θ̂
∗
kdy

}
for each horizontal wavenumber k where ‖ · ‖ is now the
L2 norm on complex valued functions of y ∈ [0, 1] and
Re {·} indicates the real part of a complex quantity. The
Cauchy-Schwarz and Young inequalities imply∣∣∣∣ a i k

Ra1/2

∫ 1

0

ω̂kθ̂
∗
kdy

∣∣∣∣ ≤ a2

4Ra
‖ ω̂k‖2 + k2‖θ̂k‖2 (15)

so dropping the manifestly non-negative term ‖Dω̂k‖2,

Qk ≥ ‖Dθ̂k‖2 +

[
ak2

Ra3/2
+

1

Ra

(
b− a2

4

)]
‖ ω̂k‖2

−1

δ
Re

{∫ δ

0

v̂k(y)θ̂∗k(y)dy +

∫ 1

1−δ
v̂k(y)θ̂∗k(y)dy

}
.(16)

Restricting a2 < 4b, the task is to dominate the indefinite
boundary layer integrals by the positive definite terms.

The Fourier coefficients of the vertical velocity and vor-
ticity (suppressing the time dependence) are related by

ik ω̂k(y) = D2v̂k(y)− k2v̂k(y). (17)

Integrating the modulus squared of both sides with a
simple integration by parts implies

k2‖ ω̂k‖22 = ‖D2vk‖2 + 2k2‖Dvk‖2 + k4‖vk‖2. (18)

On the other hand, integration by parts and the Cauchy-
Schwarz and Young inequalities yield

2

3
k2‖Dv̂k‖2 ≤

1

9
‖D2v̂k‖22 + k4‖v̂k‖2 (19)

so that, combining (18) and (19),

k2‖ω̂k‖22 ≥
8

9
‖D2v̂k‖2 +

8

3
k2‖Dv̂k‖2. (20)

Boundary conditions on v̂k(y) dictate that∫ 1

0

Re {Dv̂k(y)} dy = Re {v̂k(y)}|y=1
y=0 = 0 (21)

so ∃ y0 ∈ (0, 1) such that Re {Dv̂k(y0)} = 0. The fun-
damental theorem of calculus followed by application of
the Cauchy-Schwarz and Young inequalities imply

(Re {Dv̂k(y)})2 = 2
∫ y
y0

Re
{
D2v̂k(y′)

}
Re {Dv̂k(y′)} dy′

≤
√
27

8k

(
8
9‖Re

{
D2v̂k

}
‖2 + 8

3k
2‖Re {Dv̂k} ‖2

)
. (22)

A similar pointwise bound holds for the imaginary part
of Dv̂k(y) so its modulus squared satisfies

|Dv̂k(y)|2 ≤
√
27

8k

(
8
9‖D2v̂k‖2 + 8

3k
2‖Dv̂k‖2

)
≤ 33/2

8 k‖ ω̂k‖2. (23)

Thus, integrating Dv̂k from 0 to y and applying Hölder’s
inequality, it is evident that

|v̂k(y)| ≤ 33/4

23/2
k1/2 y ‖ ω̂k‖. (24)

Likewise, integrating Dv̂k from 1− y to 1,

|v̂k(y)| ≤ 33/4

23/2
k1/2 (1− y) ‖ ω̂k‖. (25)

Because θ̂k(y) vanishes at y = 0 and 1, applications
of the fundamental theorem of calculus and Cauchy-
Schwarz inequality yield the pointwise bounds

|θ̂k(y)| ≤ y1/2
(∫ 1/2

0

|Dθ̂k(y′)|2dy′
)1/2

(26)

for 0 ≤ y ≤ 1/2 and, for 1/2 ≤ y ≤ 1,

|θ̂k(y)| ≤ (1− y)1/2

(∫ 1

1/2

|Dθ̂k(y′)|2dy′
)1/2

. (27)

Using (24 - 27), we conclude

1
δ

∣∣∣∫ δ0 v̂k(y)θ̂∗k(y)dy +
∫ 1

1−δ v̂k(y)θ̂∗k(y)dy
∣∣∣ ≤

≤ 33/2

52·22 k δ
3 ‖ ω̂k‖2 + ‖Dθ̂k‖2. (28)

Hence Qk ≥ 0 is guaranteed by a δ small enough that

ak2

Ra3/2
+

1

Ra

(
b− a2

4

)
− 33/2k

52 · 22 δ
3 ≥ 0. (29)

Inserting a = 2√
15

and b = 1
5 into (29)—chosen to

minimize the prefactor in the bound—and minimizing
the suitable δ over k, this is satisfied by choosing δ =
24/3·55/12

33/4
Ra−5/12 where k = 1

31/4·51/4 Ra1/4 is the mini-
mizing wavenumber. Inserting these δ and b into (13) we
see that for Ra > 58.44 . . . (actually for Ra > 27

4 π
4)

Nu ≤ 57/12 · 33/4
213/3

Ra5/12 − 1

4
. 0.2891 Ra5/12. (30)
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This 5
12 exponent for the Nu-Ra upper bound scaling,

albeit with a prefactor 0.142, was conjectured by Otero
from a numerical study nearly a decade ago [18]. The
proof here puts that result on firm analytical ground.
The Nu-Ra and the distinguished horizontal wavenum-

ber scaling k ∼ Ra1/4 also agree with those conjectured
by Ierley, Plasting, and Kerswell following a careful com-
bination of numerical and asymptotic analyses of the up-
per bound problem for infinite Prandtl number Rayleigh-
Bénard convection in three spatial dimensions with free-
slip boundaries [20]. In fact the analysis in this paper
can be extended to that case because there is no vortex
stretching at Pr =∞ so an enstrophy balance akin to (7)
is realized for free-slip boundaries [23].

While the rigorous bound β ≤ 5
12 ≈ .4167 for the

model of Rayleigh-Bénard convection considered here is
still well above that observed in most experiments and
direct numerical simulations, it has significant ramifica-
tions from a theoretical point of view. There are sev-

eral theoretical predictions of Ra1/2 scaling of the heat
transport in the “ultimate” regime of asymptotically high
Raleigh numbers [7–9] and the result proved here shows
that those arguments cannot be correct without plainly
appealing to no-slip boundary conditions or directly re-
lying on three dimensional dynamics (or both).

Perhaps the simplest scaling argument—making no
mention of boundaries or boundary conditions or the spa-
tial dimension—is the hypothesis that the physical heat
transport is independent of the molecular transport co-
efficients, i.e., the kinematic viscosity ν and the thermal
diffusivity κ, in the fully developed turbulent regime [8].

This implies Nu ∼ Pr1/2 Ra1/2. A more physically ex-
plicit version of the argument proceeds from the assump-
tion that the rate-limiting process is not transferring heat

across boundary layers into the bulk, but rather is the
time it takes to adiabatically transport hot and cold fluid
elements across the layer accelerated by the reduced grav-
ity α∆Tg neglecting frictional forces. Then the vertical
velocity scale of rising or falling elements is

√
gα∆Th and

their heat content is O(∆T ), so at sufficiently high den-
sity of such elements the heat flux is ∼ (gαh)1/2∆T 3/2.
When normalized by the conductive heat flux κ∆T/h,

this again yields Nu ∼ Pr1/2 Ra1/2.

More sophisticated arguments [7, 9] produce the sim-
ilar predictions. It has also been proposed that the 1

2
exponents will appear if the physical boundary layers are
negligible (as might be hypothesized when Ra → ∞)
or absent altogether. This leads to the consideration of
“homogeneous” Rayleigh-Bénard convection where the
Boussinesq equations with a linear background profile
are posed on a fully periodic domain. Direct numeri-
cal simulations in three dimensions and a closure theory
have indicated that this scaling emerges for some aspect
ratios [24, 25] although no upper bounds on the heat
transport can possibly exist and the genuineness of sta-
tistical steady states is questionable for this formulation
[25, 26].

The Nu . Ra5/12 bound derived here raises questions
of precisely how the spatial dimension and the nature of
even very thin boundary layers enter into the problem at
high Rayleigh numbers. At least in two dimensions with
free-slip boundaries, no matter how high the Rayleigh
number is it is apparent that boundary layers continue
to play a limiting role in the turbulent heat transport.
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