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We show that the superconformal index (the partition function on the three-sphere times a circle)
of a certain class of 4d supersymmetric field theories is exactly equal to a partition function of
q-deformed non-supersymmetric 2d Yang-Mills theory.

Introduction: In this letter we describe a new power-
ful duality, relating physics in four and in two dimensions.
We will argue that for a large class of four-dimensional

superconformal gauge theories, non-trivial information
about the operator spectrum is captured by correlators
of a two-dimensional non-supersymmetric gauge theory.
The 4d side of the duality is generically strongly-coupled,
and difficult to analyze directly; on the other hand cal-
culations on the 2d side will be explicit and algorith-
mic. Thus our conjecture gives new information about
strongly-coupled 4d field theories.

Our proposal is in the same spirit as the Alday-
Gaiotto-Tachikawa (AGT) relation between the partition
function of a 4d N = 2 gauge theory on S4 and a corre-
lator in 2d Liouville/Toda theory [1]. In our case, the 4d
observable is a (twisted) supersymmetric partition func-
tion of an N = 2 superconformal field theory on S3×S1,
also known as the superconformal index. We will focus
on a “reduced” index that depends on a single fugacity
q. On the 2d side, instead of Liouville/Toda we have
the zero-area limit of q-deformed Yang-Mills theory. The
topological nature of this 2d theory dovetails with the in-
dependence of the 4d index on the gauge theory moduli.

We begin by reviewing the 4d side of the duality. The
full N = 2 superconformal index is defined as [2]

I = Tr(−1)F p
E−R

2
+j1q

E−R
2

−j1u−(r+R) , (1)

where the trace is over the states of the theory on S3 (in
the usual radial quantization) and F the fermion num-
ber. The symbol E stands for the conformal dimension,
(j1, j2) for the Cartan generators of the SU(2)1×SU(2)2
isometry group, and (R , r) for the Cartan generators of
the SU(2)R × U(1)r R-symmetry. The fugacities p, q,
and u keep track of the maximal set of quantum num-
bers commuting with a single real supercharge,Q ≡ Q̃1−̇,
which with no loss of generality has been chosen to have
R = 1

2 , r = − 1
2 , j1 = 0, j2 = − 1

2 and (of course) E = 1
2 .

Only states that obey 2{Q,Q†} = E − 2j2 − 2R+ r = 0
contribute to the index. Note that the variables p, q,

and u are related to t, y, v of [3] as p = t3y, q = t3

y and
u = v

t . For a theory with a weakly-coupled Lagrangian
description the index is computed explicitly by a matrix

integral,

I(p, q, u;V ) =

∫

[dU ]

exp





∞
∑

n=1

1

n

∑

j

f (j)(pn, qn, un)χRj
(Un, V n)



 .

Here U denotes an element of the gauge group, with [dU ]
the invariant Haar measure, and V an element of the
flavor group. The sum is over the different N = 2 su-
permultiplets appearing in the Lagrangian, with Rj the
representation of the j-th multiplet under the flavor and
gauge groups and χRj

the corresponding character. The

functions f (j) are the “single-letter” partition functions,
f (j) = fV or f (j) = f

1

2
H according to whether the j-th

multiplet is an N = 2 vector or N = 2 1
2 -hypermultiplet.

They are easily evaluated [2]:

fV(p, q, u) =
(u− 1

u )
√
pq − (p+ q) + 2pq

(1− p)(1 − q)
, (2)

f
1

2
H(p, q, u) =

(pq)
1

4
1√
u
− (pq)

3

4

√
u

(1− p)(1 − q)
. (3)

We will focus on a reduced index, by setting u = 1 and
p = q, which leads to the significant simplification

fV =
−2q

1− q
, f

1

2
H =

q
1

2

1− q
. (4)

We consider a class of N = 2 4d superconformal theories
(SCFTs) constructed from a set of elementary building
blocks [4]. The building blocks are isolated SCFTs with
flavor symmetry G1 × G2 × G3, Gi ⊆ SU(N) for given
N . In the simplest case of N = 2, the only building
block is the free 1

2 -hypermultiplet in the tri-fundamental
representation of the SU(2)3 flavor group. For N > 2
most of the building blocks are intrinsically strongly-
interacting theories with no Lagrangian description. One
can “glue together” two building blocks by gauging a
common SU(N) flavor symmetry. Iterating this proce-
dure one constructs a large class of N = 2 gauge theories,
the SU(N) “generalized quivers” [4]. There is a geomet-
ric interpretation of this construction, where one regards
the building blocks as three-punctured spheres, with the
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punctures associated to the flavor symmetries; the glu-
ing operation is performed by connecting the punctures
with cylinders. The complex structure moduli of the
resulting punctured Riemann surface correspond to the
complexified gauge couplings. The same punctured Rie-
mann surface can often be obtained by following several
different gluing paths (different pairs-of-pants decompo-
sitions). The generalized quiver theories associated to
different decompositions of the same surface are related
by S-dualities [4].
The index of a generalized quiver can be written in

terms of the index of its constituents. We parametrize
the index of an elementary building block (3-punctured
sphere) by “structure constants” IN (x1,x2,x3) where xi

are fugacities dual to the Cartan subgroup of Gi: except
in special cases these are a priori unknown functions.
On the other hand we can easily write the index ηN (x)
of the SU(N) vector multiplets used in the gluing (prop-
agators),

ηN (x) = exp

[

−2

∞
∑

n=1

1

n

qn

1− qn
χadj(x

n)

]

.

For example, gluing two 3-punctured spheres with one
cylinder one obtains the following index

∫

[dU(x)] IN (x1,x2,x) ηN (x) IN (x,x3,x4) . (5)

By defining a metric

ηN (x1,x2) ≡ ηN (x1)
∑

R∈UN

χR(x1)χR(x2), (6)

where UN is the set of irreducible finite-dimensional rep-
resentations of SU(N), we can re-write (5) as

IN (x1,x2,x) · ηN (x,x′) · IN (x′,x3,x4) , (7)

where · multiplication means integration over the Haar
measure. S-duality then implies that the metric and
structure constants form an associative algebra and thus
a 2d topological field theory (TQFT) [3]. (Strictly speak-
ing, the state-space at each puncture, which is spanned
by Gi representations, is infinite-dimensional, so one
must slightly relax the standard mathematical axioms
for a TQFT.) Associativity was directly verified for the
SU(2) and SU(3) generalized quiver theories in [3, 5], for
generic values of the fugacities p, q and u. In the follow-
ing we will identify the 2d topological theory implicitly
defined by the reduced index with an explicit model: q-
deformed Yang-Mills (qYM) in the zero-area limit.
SU(2) generalized quivers: Let us start with the
simplest case, the SU(2) quivers. Here the building
blocks are free tri-fundamental 1

2 -hypermultiplets,

I222(a1, a2, a3) = exp

[ ∞
∑

n=1

1

n

q
1

2
n

1− qn
χ�(a

n
1 )χ�(a

n
2 )χ�(a

n
3 )

]

.

Remarkably, one can prove (e.g. by comparing ana-
lytic properties) that I222(a1, a2, a3) admits the equiv-
alent representation

I222 =(q2; q)∞

3
∏

i=1

η
− 1

2

2 (ai)
∑

R∈U2

χR(a1)χR(a2)χR(a3)

[|R|]q
.

Here (a; q)∞ ≡ ∏∞
i=0(1 − aqi). |R| denotes the dimen-

sion of the representation R. The symbol [x]q denotes

the q-deformed number, [x]q ≡ (q−
x
2 − q

x
2 )/(q−

1

2 − q
1

2 ).
The SU(2) characters are given by χR(q1/2) = [|R|]q.
The structure constants contain the factors

∏

i η
−1/2
2 (ai),

which cancel with the metric η2(ai) when two punctures
are glued. It is then natural to define rescaled structure
constants and metric,

Î222(a1, a2, a3) = N222(q)
∑

R∈U2

χR(a1)χR(a2)χR(a3)

[|R|]q
,

η̂2(a, b) =
∑

R∈U2

χR(a)χR(b) , (8)

where N222(q) = (q2; q)∞. Up to the overall normaliza-
tion N222, these are precisely the structure constants and
metric of 2d qYM in the zero area limit [6, 7]!
The above implies that by setting one of the SU(2)

fugacities to q1/2 we “close” a puncture,

Î222(a, b, q1/2) = N222(q) η̂2(a, b) .

Applying this procedure again, we close another punc-
ture and obtain the one-punctured sphere (the cap). For
higher-rank groups we will encounter a similar procedure:
setting some combination of the flavor fugacities to q1/2

one obtains punctures with reduced flavor symmetry.
SU(3) generalized quivers: Next let us consider the
SU(3) generalized quivers. Here two new generic features
appear. First, the basic building block is an interacting
theory with no Lagrangian description, the E6 SCFT [4,
8]. Second, there is more than one type of puncture: in
addition to the maximal SU(3) flavor puncture there is
a puncture with reduced flavor symmetry, U(1) [4].
The representations of SU(N) are parametrized by N

integers λ1 ≥ λ2... ≥ λN−1 ≥ λN = 0, the row lengths
of the corresponding Young diagram. The q-deformed
dimension of the representation is

dimqRλ =
∏

i<j

[λi − λj + j − i]q/[j − i]q ,

and the characters are given by Schur polynomials

χλ(x) = det
(

xi
λj+k−j

)

/ det
(

xi
k−j

)

.

Specializing to SU(3) we can parametrize all the
Young diagrams by (λ1, λ2). We observe again that
the q-dimension of a representation is equal to the
group character with a particular choice of fugacities,
χλ1,λ2

(q, 1, q−1) = dimqRλ1,λ2
. The sphere with three
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maximal punctures corresponds to the strongly coupled
E6 SCFT (the SU(3)3 flavor symmetry is accidentally
enhanced to E6). This theory has no Lagrangian descrip-
tion and thus we do not have a direct way to compute its
index. However, this index was computed [5] indirectly
by employing Argyres-Seiberg duality [8]. Inspired by the
SU(2) case, we conjecture that the index IE6

({xi}3i=1) of
the E6 SCFT is proportional to the structure constants
CSU(3)q of q-deformed SU(3) Yang-Mills,

IE6
(xi) = N333(q)

[

3
∏

i=1

η−
1

2 (xi)

]

CSU(3)q (xi) ,

where

CSU(N)q (xi) =
∑

R∈UN

χR(x1)χR(x2)χR(x3)

dimqR
,

and N333(q) a normalization factor. Using Mathematica,
we have checked this proposal against the results of [5]
to several orders in q, and in the process determined the
normalization to be N333(q) = (q2; q)∞(q; q)∞.
Another building block is given by a sphere with two

SU(3) punctures and one U(1) puncture. This corre-
sponds to a free hypermultiplet in the bi-fundamental of
SU(3)2 and charged under the U(1). The index of this
theory is explicitly given by

I331(x1,x2; a) = exp

[ ∞
∑

n=1

1

n

q
1

2
n

1− qn
χhyp(x1

n,x2
n; an)

]

,

where the flavor character χhyp(x1,x2; a) is given by
∑

i,j(x
i
1x

j
2a+

1

xi
1
xj

2
a
). One can verify by series expansion

in q that

I331(x1,x2; a) = CSU(3)q (x1,x2; a)× (9)
∏2

i=1 η
− 1

2 (xi)
∏2

ℓ=1(1− qℓ)
exp

[ ∞
∑

n=1

q
3

2
n

1− qn
a3n + a−3n

n

]

,

with

CSU(3)q (x1,x2; a) = (10)
∞
∑

R∈U3

χR(x1)χR(x2)χR(a q1/2, aq−1/2, a−2)

dimqR
.

SU(N) maximal and minimal punctures: The
generic building block of a higher-rank quiver is an in-
teracting SCFT with no Lagrangian description. Unlike
the case of SU(2) and SU(3) quivers it is very hard to
calculate the index of these theories, either directly or
indirectly. However, we can naturally extrapolate the
relation to 2d qYM to higher-rank groups. We conjec-
ture that the reduced index of the theory corresponding
to sphere with three maximal punctures (the TN theory
of [4]) is

ITN
(xi) =

N
∏

ℓ=2

(qℓ; q)∞

3
∏

i=1

η−
1

2 (xi)CSU(N)q (xi) .

This conjecture can be tested against the numerous S-
dualities of the generalized quivers [4]. For instance,
a linear superconformal quiver theory with two SU(4)
nodes admits a dual description in terms of T4 coupled
to SU(3) gauge theory which in turn is coupled to an
SU(2) gauge theory with a single hypermultiplet. We
have checked, in the q expansion, that the indices on
both sides of the duality indeed match if one uses our
conjecture for the T4 index. Another test is to compare
with physical expectations for the spectrum of protected
operators. A class of protected operators in the TN the-
ories are the Higgs branch operators [9]. These come
in two families: E = 2, R = 1 in flavor representation
(adj, 1, 1)⊕(1, adj, 1)⊕(1, 1, adj) and E = N−1, R = N−1

2
in representation (N,N,N)⊕(N̄, N̄ , N̄). It is straightfor-
ward to see that these operators appear in our conjecture
for the index: the first family comes from the η(x)−

1

2 fac-
tors, and the second from the χ�(x1)χ�(x2)χ�(x3) and
χ
�
(x1)χ�

(x2)χ�
(x3) terms in CSU(N)q .

We can generalize the conjecture to the structure con-
stants with two maximal punctures and one U(1) punc-
ture,

INN1(x1,x2, a) = exp

[ ∞
∑

n=1

1

n

q
1

2
n

1− qn
χhyp(x1

n,x2
n; an)

]

=

CSU(N)
q
(x1,x2; a)

∏2
i=1 η

1

2 (xi)
∏N−1

ℓ=1 (1− qℓ)
exp

[ ∞
∑

n=1

q
N
2
n

1− qn
aNn + a−Nn

n

]

,

where structure constants CSU(N)q
(x1,x2; a) are

CSU(N)q (x1,x2; a) = (11)
∑

R∈UN

1

dimqR
χR(x1)χR(x2)χR(aq

N−2

2 , .., aq−
N−2

2 , a1−N) .

Again we have verified this conjecture in the q-expansion.
Generic punctures: Generic punctures are classi-
fied [4] by the embeddings SU(2) ⊂ SU(N), which are
specified by the decomposition of the fundamental of
SU(N) into SU(2) representation. This information can
be encoded into a Young diagram with N boxes, where
the height of each column denotes the dimension of an
SU(2) representation. The commutant of this embed-
ding is the flavor symmetry associated to the puncture.
The maximal puncture corresponds to a single-row dia-
gram, the closed puncture (i.e. no puncture) corresponds
to a single-column diagram. We are lead to the following
conjecture for the index of a theory with three generic
punctures corresponding to Young diagarms λi

I(Λ1,Λ2,Λ3) = N{λi}(q)
3
∏

i=1

Bλi
(Λi)CSU(N)(Λ1,Λ2,Λ3)

with Λi labeling an association of flavor fugacities accord-
ing to the Young diagram λi. The rule to associate the
flavor fugacities to the SU(N) fugacities is illustrated in
Fig. 1. The normalization factors (N and B) for generic
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2

FIG. 1. An example of the rule to associate flavor fugacities
for a non-maximal puncture. Illustrated here is a puncture
for N = 26 with flavor symmetry S(U(3)U(2)2U(1)). The
S(. . . ) constraint imposes (ab)5(cde)4f2gh = 1.

punctures can be in principle obtained by employing dif-
ferent S-dualities of the quivers [4]. As an example, con-
sider the E7 SCFT which is given by a sphere with two
maximal punctures of SU(4) and one square Young di-
agram with four boxes. Following the above procedure
and fixing the normalization from the relevant Argyres-
Seiberg duality [8], we are led to propose

IE7
(x,y; a) =

exp

[

∑∞
n=1

qn(1+qn)
1−qn

a2n+a−2n

n

]

η
1

2 (x)η
1

2 (y)(1 − q)(1 − q2)2(1− q3)
×

∑

R∈U4

χR(x)χR(y)χR(q
1

2 a, q−
1

2 a, q
1

2 /a, q−
1

2 /a)

dimqR
,

Here x, y label the two sets of SU(4) fugacities and a the
SU(2) fugacity. We have verified perturbatively in q that
this expression is indeed E7 covariant – a tight check of
our logic.

Discussion: We have given compelling evidence that
the reduced superconformal index of an N = 2 gener-
alized SU(N) quiver theory is exactly computed by a
correlator in 2d SU(N)q Yang-Mills. This duality is new
tool to investigate interacting field theories without a La-
grangian description. For example, it should be useful to
study the constraints obeyed by the Higgs branch oper-
ators, generalizing to N > 3 the analysis of [10]. Two-
dimensional qYM first appeared in a physical setting in
the context of counting BPS states [6], and it would be
interesting to find a relation with our work. An obvi-
ous question is whether our results can be generalized
to the full index, with all fugacities turned on. It is al-
ready remarkable that the known structure constants of
the SU(2) quivers implicitly define a (q, p, u) deformation

of SU(2) Yang-Mills. Work is in progress in investigating
the nature of this deformation, in order to extrapolate it
to N > 2. The q and p fugacities appear on a symmetric
footing, in a way which is strongly suggestive of an ellip-
tic, or “dynamical”, deformation of the quantum group
structure SU(N)q that we have uncovered for p = q,
u = 1. Indeed the full index is most elegantly expressed
[11] in terms of elliptic Gamma functions [12]. Finally,
a more conceptual understanding of the duality would
be very desirable. As for the AGT correspondence [1],
the existence, but not the details, of a 4d/2d relation can
be traced to the definition of the 4d SCFT as the in-
frared limit of the 6d (2,0) theory on a Riemann surface.
Whether this intuition can be turned into a microscopic
derivation remains to be seen.
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