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We present the first analytical inspiral-merger-ringdown gravitational waveforms from binary black holes
(BBHs) with non-precessing spins, that is based on a description of the late-inspiral, merger and ringdown in
full general relativity. By matching a post-Newtonian description of the inspiral to a set of numerical-relativity
simulations, we obtain a waveform family with a conveniently small number of physical parameters. The
physical content of these waveforms include the “orbital hang-up” effect, and “spin flips”. These waveforms will
allow us to detect a larger parameter space of BBH coalescence, including a considerable fraction of precessing
binaries in the comparable-mass regime, thus significantlyimproving the expected detection rates.

Coalescing black-hole (BH) binaries are among the most
promising candidate sources for the first detection of gravita-
tional waves (GWs). Such observations will lead to precision
tests of general relativity as well as provide a wealth of in-
formation relevant to fundamental physics, astrophysics,and
cosmology. Computation of the expected waveforms from
these sources is a key goal in current research in gravitation.

While theinspiral andring-downstages of the BH coales-
cence are well-modeled by perturbative techniques, an accu-
rate description of themergerrequires numerical solutions of
Einstein’s equations. Although performing numerical simula-
tions densely sampling the entire parameter space of BH co-
alescence is computationally prohibitive, waveform templates
modeling all the three stages can now be constructed by com-
bining analytical- and numerical- relativity results, dramati-
cally improving the sensitivity of searches for GWs from BH
binaries, and the accuracy of estimating the source param-
eters [1–4]. To date, inspiral-merger-ringdown (IMR) tem-
plates have been computed only for nonspinning BH bina-
ries [1, 3–6]. However, most BHs in nature are expected to
be spinning [7], which necessitates the inclusion of spinning-
binary waveforms in GW searches. But, spin adds six pa-
rameters (three components for each BH), and each additional
parameter in a search template bank leads to a higher signal-
to-noise-ratio (SNR) threshold for a confident detection [8].
Also, this requires accurate numerical simulations acrossthis
large parameter space, which are not yet available. Moreover,
implementing a search covering the full spin parameter space
has proven to be difficult.

In this letter, we present an IMR waveform family mod-
eling the dominant harmonic of binaries with non-precessing
spins, i.e., spins (anti-)aligned with the orbital angularmo-
mentum. Aligned-spin binaries are an astrophysically inter-
esting population as such systems are expected from isolated
binary evolution and in gas-rich galactic mergers [9, 10]. Non-
precessing binaries also exhibit interesting strong-gravity ef-
fects like the “orbital hang-up” [11] and “spin flips” [12]. We

make use of the degeneracies in the physical parameters to
parametrize our waveform family by only the total massM ≡
m1+m2 of the binary, the symmetric mass ratioη ≡ m1m2/M2,
and asinglespin parameterχ ≡ (1 + δ) χ1/2 + (1 − δ) χ2/2,
whereδ ≡ (m1−m2)/M andχi ≡ Si/m2

i , Si being the spin an-
gular momentum of theith BH. The last feature is motivated
by the observation (see e.g., [13]) that the leading spin-orbit-
coupling term in post-Newtonian (PN) waveforms is domi-
nated by this parameter. We also show that this waveform
family is able to capture a significant fraction of precessing bi-
naries in the comparable-mass regime, providing an efficient
and feasible way of searching for these systems [35].

Numerical simulations.— Binary BH (BBH) waveforms
covering at least eight wave cycles before merger were pro-
duced by solving Einstein equations numerically, as written
in the “moving-puncture” 3+1 formulation [14, 15]. The
numerical solutions were calculated with theBAM [16, 17],
CCATIE [18] andLLAMA [19] codes. Initial momenta were
chosen to give low-eccentricity inspiral, using either an ex-
tension of the method described in [20], or the quasicircular
formula used in [21]. GWs were extracted atRex = 90M with
BAM, Rex = 160M with CCATIE and at future null infinity with
LLAMA, using procedures discussed in [16, 18, 22]. In all sim-
ulations the GW amplitude is accurate toat least10% and
the phase toat least1 radian over the duration of the simu-
lation. Most of the waveforms employed in the construction
of the analytical templates are significantly longer (12–22cy-
cles) and more accurate [23].

We used seven sets of simulations: (1) Equal-mass binaries
with equal, non-precessing spinsχi = ±{0.25, 0.5, 0.75, 0.85},
described in [23, 24]. (2) Non-precessing, equal-spin bina-
ries with q ≡ m1/m2 = {2, 2.5, 3} and χi = {±0.5, 0.75}.
(3) Nonspinning binaries withq = {1, 1.5, 2, 2.5, 3, 3.5, 4}.
(4) Unequal-spin binaries withq = {2, 3} and (χ1, χ2) =
(−0.75, 0.75). (5) Equal-mass, unequal-spin binaries with
χi = ±{0.2, 0.3, 0.4, 0.6}. (6) Equal-mass, precess-
ing binaries with spin vectors (0.42, 0, 0.42), (0, 0, 0) and
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(0.15, 0, 0), (0, 0,0). (7) Precessingq = 3 binary with spins
(0.75, 0, 0), (0, 0,0). Simulation sets (1)–(4) and (7) were
performed withBAM, set (5) withCCATIE, and set (6) with
LLAMA. The analytical waveform family is constructed em-
ploying only the equal-spin simulation sets (1)–(3); sets (4)–
(7) were used to test the efficacy of our model against more
general spin/mass configurations. Two additional waveforms
were used in these tests: the Caltech-Cornell equal-mass, non-
spinning simulation [25], and the RITq = 1.25 precessing
binary simulation with|χ1| = 0.6, |χ2| = 0.4 [26].

Constructing hybrid waveforms.—We produce a set of
“hybrid waveforms” [5] by matching PN and numerical-
relativity (NR) waveforms in an overlapping time interval
[t1, t2]. These hybrids are assumed to be the target signals
that we want to detect. For the PN inspiral waveforms we
choose the “TaylorT1” waveforms at 3.5PN [27] phase accu-
racy, considering spin terms up to 2.5PN [13, 28]. This is
motivated by PN-NR comparisons of equal-mass spinning bi-
naries, in which the accuracy of the TaylorT1 approximant
was found to be the most robust [23, 24]. We include the 3PN
amplitude corrections to the dominant quadrupole mode [29]
and the 2PN spin-dependent corrections [13], which greatly
improved the agreement between PN and NR waveforms. For
precessing waveforms, spin and angular momenta are evolved
according to [28, 30].

We match the PN and NR waveforms by doing a least-
square fit over time- and phase shifts between the waveforms,
and a scale factora that reduces the PN-NR amplitude differ-
ence [5]. The NR waveforms are combined with the “best-
matched” PN waveforms in the following way:hhyb(t) ≡
aτ(t) hNR(t) + (1 − τ(t)) hPN(t), whereh(t) = h+(t) − ih×(t)
andτ ranges linearly from zero to one fort ∈ [t1, t2].

Waveform templates for non-precessing binaries.—The
analytical waveforms that we construct are written in the
Fourier domain ash( f ) ≡ A( f ) e−iΨ( f ), where

A( f ) ≡ C f −7/6
1
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7
∑

k=2

vkψk
)

. (1)

Above, f ′ ≡ f / f1, v ≡ (πM f )1/3, ǫ1 = 1.4547χ−1.8897, ǫ2 =
−1.8153χ+1.6557 (estimated from hybrid waveforms),C is a
numerical constant whose value depends on the sky-location,
orientation and the masses,α2 = −323/224+ 451η/168 and
α3 = (27/8− 11η/6)χ are the PN corrections to the Fourier
domain amplitude of the (ℓ = 2,m = ±2 mode) PN wave-
form [13], t0 is the time of arrival of the signal at the detec-
tor andϕ0 the corresponding phase,L( f , f2, σ) a Lorentzian
function with widthσ centered around the frequencyf2, wm

andwr are normalization constants chosen so as to makeA( f )
continuous across the “transition” frequenciesf2 and f1, and
f3 is a convenient cutoff frequency such that the signal power
abovef3 is negligible. The phenomenological parametersψk

andµk ≡ { f1, f2, σ, f3} are written in terms of the physical
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FIG. 1: Phenomenological parametersψ2 and f2 computed from
equal-spinhybrid waveforms (dots), fits given by Eq. (2) (surfaces),
and the test-mass limit (black traces). Total mass, symmetric mass
ratio and spin parameter are denoted byM, η andχ.

parameters of the binary as:

ψk =

3
∑

i=1

N
∑

j=0

x(i j )
k ηiχ j + ψ0

k , πMµk =

3
∑

i=1

N
∑

j=0

y
(i j )
k ηiχ j + µ0

k ,

(2)
where N ≡ min(3 − i, 2) while x(i j )

k and y(i j )
k are tabulated

in Table I. Figure 1 plots an example of this map from the
phenomenological- to physical- parameter space.

We match these waveforms to 2PN accurate adiabatic in-
spiral waveforms in the test-mass (η → 0) limit, where the
phenomenological parameters reduce to:

f1→ f 0
LSO, f2 → f 0

QNM, σ→ f 0
QNM/Q

0, ψk → ψ0
k. (3)

Above, f 0
LSO and f 0

QNM are the frequencies of the last stable
orbit [31] and the dominant quasi-normal mode, andQ0 is the
ring-down quality factor [32] of a Kerr BH with massM and
spinχ, while ψ0

k are the (2PN) Fourier domain phasing coef-
ficients of a test-particle inspiralling into the Kerr BH, com-
puted using the stationary-phase approximation [13].

The test-mass-limit waveforms suffer from two limitations:
1) we assume that the evolution of the GW phase at the
merger and ringdown stages is a continuation of the adia-
batic inspiral phase, and 2) in the absence of a reliable plunge
model, we approximate the amplitude of the plunge with
f ′−2/3 (1+

∑2
i=1 ǫi v

i). Nevertheless, in the test-mass limit, it is
expected that the signal will be dominated by the long inspi-
ral stage, and the inspiral is guaranteed to be well-modelled
by our waveforms. More importantly, the imposition of the
appropriate test-mass limit in our fitting procedure ensures
that the waveforms are well behaved even outside the param-
eter range where current NR data are available. Because of
this, and the inclusion of the PN amplitude corrections, these
waveforms are expected to be closer to the actual signals than
the templates proposed in [1, 6] in the non-spinning limit.
However, since the parameter space covered by the NR sim-
ulations is limited, we recommend that these waveforms be
used only in the regimeq . 10 and−0.85 . χ . 0.85.
Also, these are meant to model only the late-inspiral, merger
and ring down (M fGW > 10−3), i.e., signals from binaries in
the mass-range where merger-ringdown also contribute to the
SNR, apart from inspiral.
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Test-mass limit (ψ0
k) x(10) x(11) x(12) x(20) x(21) x(30)

ψ2 3715/756 -920.9 492.1 135 6742 -1053 -1.34×104

ψ3 −16π + 113χ/3 1.702×104 -9566 -2182 -1.214×105 2.075×104 2.386×105

ψ4 15293365/508032− 405χ2/8 -1.254×105 7.507×104 1.338×104 8.735×105 -1.657×105 -1.694×106

ψ6 0 -8.898×105 6.31×105 5.068×104 5.981×106 -1.415×106 -1.128×107

ψ7 0 8.696×105 -6.71×105 -3.008×104 -5.838×106 1.514×106 1.089×107

Test-mass limit (µ0
k) y(10) y(11) y(12) y(20) y(21) y(30)

f1 1− 4.455(1− χ)0.217+ 3.521(1− χ)0.26 0.6437 0.827 -0.2706 -0.05822 -3.935 -7.092
f2 [1 − 0.63(1− χ)0.3]/2 0.1469 -0.1228 -0.02609 -0.0249 0.1701 2.325
σ [1 − 0.63(1− χ)0.3] (1 − χ)0.45/4 -0.4098 -0.03523 0.1008 1.829 -0.02017 -2.87
f3 0.3236+ 0.04894χ + 0.01346χ2 -0.1331 -0.08172 0.1451 -0.2714 0.1279 4.922

TABLE I: Phenomenological parameters describing the analytical waveforms. In test-mass limit, they reduce to the appropriate quantities
given by perturbative calculations [13, 31, 32]. The test-mass limit of f1 is a fit to the frequency of the last stable orbit given in [31].
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FIG. 2: Top and right plots: Match and FF of our analytical IMR
templates with equal-spin hybrid waveforms constructed from simu-
lation sets (1)–(3).Bottom left: FF of non-spinningIMR templates
proposed in [1, 6] with the same hybrids. A comparison with the
other plots demonstrates the effect of neglecting spins.

We have examined the “faithfulness” [33] of the new tem-
plates in reproducing the hybrid waveforms by computing the
match(noise-weighted inner product) with the hybrids. Loss
of the SNR due to the “mismatch” between the template and
the true signal is determined by the match maximized over
the whole template bank – calledfitting factor(FF). The stan-
dard criteria for templates used in searches is that FF> 0.965,
which corresponds to a loss of no more than 10% of signals.

Match and FF of the analytical waveforms with the equal-
(unequal-) spin hybrid waveforms are plotted in Fig. 2 (Fig.3),
using the Initial LIGO design noise spectrum [34]. Note that
the analytical waveform family is constructed employingonly
the equal-spin hybrid waveforms (Fig. 2). The PN–NR match-
ing region used to construct the unequal-spin hybrids (Fig.3)
are also different from that used for equal-spin hybrids. These
figures demonstrate the efficacy of the analytical templates
in reproducing the target waveforms – templates are “faith-

!"" #"" $"" %""!"

"&''

!

"&'(

)
)

 

 

*+,-./012131!

45612131#
45612131$

61716
89:

**5;<=12131!

!"" #"" $"" %""!"

"&'>

"&'(

"&''

!

6
+
-/
0

 

 

61716
89:

!"" #"" $"" %""!"

"&'>

"&'(

"&''

!

"&'?@

61716
89:

)
)

 

 

"&> "&( "&'! "&'?@!
"&%

"&?

"&(

!

))

!
1!
1*
9
A
9
,&
1B
C8
-D
CE
&

 

 

2131!

2131%

2131'

456

F<;

GG565!!

GG565!#

FIG. 3: Top panel:Match and FF of the our templates withunequal-
spinhybrid waveforms constructed from simulation sets (4) and (5),
and the Caltech-Cornell non-spinning simulation.Bottom left: FF
with precessinghybrids constructed from sets (6) and (7), and the
RIT simulation. Bottom right: Fraction of generic precessing PN
waveforms (M = 10M⊙) producing fitting factor FF with the tem-
plates proposed in this paper — 85% (62%) 37% of the binaries with
q = 1 (4) 9 produce FF> 0.965.

ful” (match> 0.965)eitherwhen the massesor the spins are
equal, while they arealways“effectual” [33] in detection (FF
> 0.965). In contrast, the bottom left plot of Fig. 2 shows
the FF of the non-spinning IMR template family proposed
in [1, 6] with the equal-spin hybrid waveforms. FFs as low
as 0.8 suggest that up to 50% binaries may go undetected if
nonspinning IMR templates are employed to search for bina-
ries with high (aligned) spins.

The bottom left plot of Fig. 3 shows the FF and match of
the template family with fourprecessinghybrid waveforms.
The high FFs are indicative of the effectualness of the tem-
plates in detecting precessing binaries. Since presently not
enough NR simulations are available to make a quantitative
statement, and since we expect the effect of precession will be
predominant in the case of lower mass binaries (when large
number of cycles are present in the detector band), we might
be able to acquire some useful indication by studying pre-
cessing PN waveforms. We performed a Monte-Carlo sim-
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FIG. 4: Distance to optimally-located and oriented- equal-mass bi-
naries with (equal) spinχ producing optimal SNR 8 in Initial LIGO.

ulation where we generate precessing “restricted” PN wave-
forms with M = 10M⊙, q = {1, 4, 9}, uniformly distributed
spin magnitudes in the interval [0, 0.98] and isotropically dis-
tributed spin angles, and compute the FF with the templates
proposed in this paper. The inclination of the binary’s total
angular momentum with the line of sight from the observer is
also randomly chosen from [0, π]. The bottom right plot of
Fig. 3 shows the cumulative distribution of the FF, strongly
indicating the effectualness of the templates in detecting pre-
cessing binaries in the comparable-mass regime. These results
indicate that a search employing non-precessing templatesde-
scribed by a single spin parameter might be an attractive and
feasible way of searching for generic spinning binaries [36].

Distance to optimally oriented BBHs producing optimal
SNR of 8 in Initial LIGO is shown in Fig. 4, which demon-
strates the dramatic effect of spin for detection of high-mass
binaries; if most BBHs are highly spinning, then LIGO will
be able to detect BH coalescences up to 1Gpc, thus increas-
ing the event rates as much as five times compared to predic-
tions based on models of nonspinning binaries. For Advanced
LIGO, the distance reach is as high as 20 Gpc.

Conclusions.— We combine state-of-the-art results from
analytical- and numerical relativity to construct for the first
time a family of analytical IMR waveforms for BBHs with
non-precessing spins. These waveforms are also able to de-
tect a significant fraction of the precessing binaries in the
comparable-mass regime, with spins represented by asingle
parameter. This will considerably simplify the use of our
waveforms in GW searches in the near future, and will ac-
celerate the incorporation of NR results into the current effort
for the first detection of GWs. There are many other imme-
diate applications of our waveforms: injections into detector
data will help to put more realistic upper limits on the rate of
BBH coalescences, and to compare the different algorithms
employed in the search for BBHs, while employing these in
population-synthesis studies will provide more accurate coa-
lescence rates observable by the current and future detectors.
Our method can readily be generalized to incorporate non-
quadrupole harmonics, larger portions of the BBH parameter
space and further information from analytical approximation

methods or numerical simulations.
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