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When classical information is sent over a quantum channel, attaining the ultimate limit to channel
capacity requires the receiver to make joint measurements over long codeword blocks. For a pure-
state channel, we show that the ultimate (Holevo) limit to capacity can be attained by a receiver that
uses a multi-symbol unitary transformation on the received quantum codeword followed by separable
projective measurements on the single-modulation-symbol state spaces. We study the ultimate limits
of photon-information-efficient communications on a lossy bosonic channel, and show a general
concatenated coding and joint detection architecture to approach the Holevo limit to capacity.
Based on our general results for the pure-state quantum channel, we show some of the first concrete
examples of codes and structured joint-detection optical receivers that can achieve fundamentally
higher (superadditive) channel capacity than conventional receivers that detect each modulation
symbol individually. We thereby pave the way for future research into codes and structured optical
receivers that can attain reliable communications at data rates approaching the Holevo limit.

When the modulation alphabet of a communication
channel comprise of quantum states, the Holevo limit is
an upper bound to the Shannon capacity of the physi-
cal channel paired with any receiver measurement. Even
though the Holevo limit is an achievable capacity, the
receiver in general must make joint (collective, or en-
tangling) measurements over long codeword blocks—
measurements that can’t in general be realized by de-
tecting single modulation symbols followed by classical
post processing. This phenomenon of a joint-detection
receiver (JDR) being able to yield higher capacity than
any single-symbol receiver measurement, is often termed
as superadditivity of capacity. The more recent usage of
the term superadditivity of capacity refers to a quantum
channel being able to achieve a higher classical commu-
nications rate using transmitted states that are entan-
gled over multiple channel uses [1, 2]. For the point-to-
point lossy bosonic channel, we showed that entangled in-
puts at the transmitter cannot get a higher capacity [3].
However, one can get a higher capacity by using joint-
detection measurements at the receiver (as opposed to
a symbol-by-symbol optical receiver). In this Letter, we
use the term superadditivity in this latter context. This
usage of the term was first adopted by Sasaki, et. al. [4].

For the lossy bosonic channel (such as a free-space line-
of-sight optical link between a pair of transmit and re-
ceive apertures), a coherent-state modulation suffices to
attain the Holevo capacity, i.e., non-classical transmitted
states do not yield any additional capacity [3]. Hausladen
et. al.’s square-root-measurement [5], which in general
is a positive operator-valued measure (POVM), applied
to a random code gives us the mathematical construct
of a receiver that can achieve the Holevo limit. Lloyd
et. al. [6] recently showed a receiver that can attain the
Holevo capacity of any quantum channel by making a
sequence of “yes/no” projective measurements on a ran-
dom codebook. Sasaki et. al. [4], in a series of papers,
showed several examples of superadditive capacity using

pure-state alphabets and the square-root measurement.
However, the key practical questions that remain unan-
swered are how to design modulation formats, channel
codes, and most importantly, structured optical realiza-
tions of Holevo-capacity-approaching receivers.

In this Letter, we start by showing a simple result
that the Holevo limit of a pure-state channel is at-
tained by a projective measurement, which can be im-
plemented by a unitary operation on the quantum code-
word followed by separable projective measurements on
the single-modulation-symbol subspaces. Thereafter we
translate this result into a concatenated coded receiver
architecture for the lossy bosonic channel. Finally, we
show concrete examples of codes and receivers pursuant
to this architecture, which yield superadditive capacity
for binary-phase-shift keying (BPSK) signaling at low
photon numbers. These, we believe, are the first receiver
realizations that can exhibit superaddivity, and can be
tested using simple laboratory optics.
Attaining Holevo limit of a pure-state channel.

We encode classical information using a Q-ary modula-
tion alphabet of non-orthogonal pure-state symbols in
A ≡ {|ψ1〉, . . . , |ψQ〉}. Each channel use constitutes
sending one symbol. We assume that the channel pre-
serves the purity of A, thus take the states {|ψq〉} to be
those at the receiver. Only source of noise is the physical
detection of the states. Assume that the receiver detects
each symbol one at a time. Channel capacity is given by
the maximum of the single-symbol mutual information,

C1 = max
{pi}

max{
Π̂

(1)
j

} I1
(
{pi} ,

{
Π̂

(1)
j

})
bits/symbol, (1)

where the maximum is taken over priors {pi} over the al-

phabet and a set of POVM operators
{

Π̂
(1)
j

}
, 1 ≤ j ≤ J

on the single-symbol state-space. The measurement of
each symbol produces one of J possible outcomes, with

conditional probabilities P (j|i) = 〈ψi|Π̂(1)
j |ψi〉, which de-
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FIG. 1: (a) Classical communication system, shown here for
a BPSK alphabet. If the receiver uses symbol-by-symbol
detection, maximum capacity = C1 bits/symbol. If the
Detection+Demodulation block is replaced by a general n-
symbol joint quantum measurement, maximum capacity =
Cn bits/symbol. Superadditivity: C∞ > Cn > C1, where
C∞ is the Holevo limit. The joint-detection structure shown
achieves the Holevo limit for a coherent-state BPSK modula-
tion. (b) Our proposed modification of the classical concate-
nated coding architecture [7], in which the channel is broken
up into the physical channel and a receiver measurement, with
the joint detection receiver acting on the inner code.

fine a discrete memoryless channel. To achieve reliable
communication on this channel at a rate close to C1, for-
ward error-correction will be required. In other words, for
any rate R < C1, there exists a sequence of codebooks
Cn with K = 2nR codewords |ck〉, 1 ≤ k ≤ K, each
codeword being an n-symbol tensor product of states in
A, and a decoding rule, such that the average proba-
bility of decoding error (guessing the wrong codeword),

P̄
(n)
e = 1 − 1

K

∑K
k=1 Pr(k̂ = k) → 0, as n → ∞. In

this ‘Shannon’ setting, optimal decoding is a maximum
likelihood (ML) decision, which can in principle be pre-
computed as a long table lookup (see Fig. 1), although a
low-complexity channel decoder is desirable in any prac-
tical setting. Let us define Cn as the maximum capacity
achievable (in bits per symbol) with measurements that
jointly detect up to n symbols. The fact that joint detec-
tion allows for (n+m)Cn+m > nCn+mCm, (or Cn > C1)
is referred to as superadditivity of capacity. The Holevo-
Schumacher-Westmorland (HSW) theorem says,

C∞ ≡ lim
n→∞

Cn = max
{pi}

S

(∑
i

pi|ψi〉〈ψi|

)
, (2)

the Holevo bound, is the ultimate capacity limit, where

S(ρ̂) = −Trρ̂ log2 ρ̂ is the von Neumann entropy, and
that C∞ is achievable with joint detection over long code-
word blocks. Calculating C∞ however, doesn’t require
the knowledge of the optimal receiver measurement. In
other words, if we replaced the detection and demod-
ulation stages in Fig. 1(a) by one giant quantum mea-
surement, then for any rate R < C∞, there exists a se-
quence of codebooks Cn with K = 2nR codewords |ck〉,
1 ≤ k ≤ K, and an n-input n-output POVM over

the n-symbol state-space
{

Π̂
(n)
k

}
, 1 ≤ k ≤ K, such

that the average probability of decoding error, P̄
(n)
e =

1− 1
K

∑K
k=1〈ck|Π̂

(n)
k |ck〉 → 0, as n→∞.

Theorem 1. For a pure-state channel, a projective mea-
surement can attain C∞, and can be implemented as a
unitary transformation on the codeword followed by a
parallel set of separable single-symbol measurements.

Proof. The proof follows from the simple observation that
the minimum probability of error (MPE) measurement
for discriminating a set of pure state codewords is a pro-
jective measurement [8], which by definition, must obtain
a lower probability of decoding error than the square root
measurement. Given the latter is known to be capacity
achieving for a large random code [5], the MPE measure-
ment must also be so. Finally, it is straightforward to
show that any projective measurement on the n-symbol
state space can be implemented by first applying a uni-
tary transformation on the n-symbol quantum codeword
(a tensor-product pure state) followed by a sequence of
separable projective measurements on each symbol.

The Dolinar receiver [9] implements a binary projec-
tive MPE measurement to optimally distinguish two non-
orthogonal coherent states. Therefore a capacity achiev-
ing receiver for a binary coherent state channel could
be implemented as a unitary rotation of an n-symbol
codeword followed by a sequence of Dolinar receivers
(Fig. 1(a)), which is in general a joint measurement. De-
spite the result of Theorem 1, finding optimal codes and
low-complexity JDRs that can be built using structured
optics is difficult. It is common wisdom in classical cod-
ing theory that concatenated codes can approach Shan-
non capacity while requiring extremely low-complexity
decoders, at the expense of a lower error exponent (i.e.,
longer codeword lengths (n) needed to attain a given

P̄
(n)
e , as compared to a single optimal code and the ML

decoder) [7]. We propose a similar concatenated coding
architecture—shown in Fig. 1(b)—to approach the quan-
tum channel’s Holevo capacity, where the JDR acts on
the inner code to attain a superadditive Shannon capac-
ity Cn > C1, and the outer code (e.g., a Reed Solomon
code) drives down the error rates to attain reliable com-
munications at the capacity Cn of the inner “superchan-
nel” (see Fig. 1(b)). The remainder of this Letter will
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FIG. 2: Photon information efficiency (bits per received pho-
ton) as a function of mean photon number per mode, n̄.

present two practical constructions of such superchannels
that demonstrate superadditive capacity (Cn > C1).

Superadditive optical receivers. Consider a single-
mode lossy bosonic channel (such as a far-field single-
spatial-mode free-space-optical channel), where data is
modulated using a succession of pulses (orthogonal tem-
poral modes) with mean received photon number n̄ per
mode, where each pulse carries one modulation sym-
bol. The Holevo capacity, Cult(n̄) = g(n̄) = (1 +
n̄) log2(1 + n̄) − n̄ log2 n̄ bits/symbol, which is attained
using a coherent-state modulation [3]. Since pure loss
preserves coherent states (with linear amplitude atten-
uation), it suffices to define capacity as a function of
the mean photon number per received mode n̄, and the
pure-state channel discussion above applies. At high
n̄, symbol-by-symbol heterodyne detection asymptoti-
cally achieves the Holevo limit. The low photon number
regime is more interesting, where the joint-detection gain
is the most pronounced.

In Fig. 2, we show the photon information efficiency
(PIE), the number of bits that can be reliably decoded
per received photon, as a function of n̄ [15]. There
is no fundamental upper bound to the PIE; however,
higher PIE necessitates lower n̄. Furthermore, binary
modulation and coding is sufficient to meet the Holevo
limit at low n̄. Specifically, the BPSK alphabet A1 ≡
{|α〉, | − α〉}, |α|2 = n̄, is the Holevo-optimal binary mod-
ulation at n̄� 1. Dolinar proposed a structured receiver
that realizes the binary MPE projective measurement on
an a pair of coherent states using single photon detec-
tion and coherent optical feedback [9]. If the Dolinar
receiver is used to detect each symbol, the BPSK chan-
nel is reduced to a classical binary symmetric channel
with capacity C1 = 1−H(q) bits/symbol, where H(·) is
the binary Shannon entropy, and q = [1−

√
1− e−4n̄]/2

is the minimum mean probability of error to discrimi-
nate {|α〉, | − α〉}. This is the maximum achievable ca-
pacity when the receiver detects each symbol individu-

FIG. 3: A two-symbol JDR that attains ≈ 2.5% higher capac-
ity for BPSK than the best single-symbol (Dolinar) receiver.

ally, which includes all conventional (direct-detection and
coherent-detection) receivers. The PIE C1(n̄)/n̄ caps out
at 2/ ln 2 ≈ 2.89 bits/photon at n̄ � 1. Closed-form ex-
pressions and scaling behavior of Cn, the maximum ca-
pacity achievable with measurements that jointly detect
up to n symbols, for n ≥ 2 are not known. However,
the Holevo limit of BPSK, C∞(n̄) = H([1 + e−2n̄]/2),
can be calculated easily using Eq. (2). Good codes and
JDRs would be needed to bridge the huge gap between
the PIEs C1(n̄)/n̄ and C∞(n̄)/n̄, shown in Fig. 2. It is
interesting to reflect on the point shown by the orange
circle (at 10 bits/photon) in Fig. 2, which says that for
a 1.55µm far-field free-space optical link operating at 1
GHz modulation bandwidth, the laws of physics permit
reliable communications at 0.266 Gbps with only 3.4 pW
of average (and peak) received optical power!

A two-symbol superadditive JDR— Some examples of
superadditive codes and joint measurements have been
reported [4, 10], but not with structured receiver de-
signs. An ensemble (a (2, 3, 1) inner code [16]) con-
taining three of the four 2-symbol BPSK states, A2 ≡
{|α〉|α〉, |α〉| − α〉, | − α〉|α〉}, with priors (1 − 2p, p, p),
0 ≤ p ≤ 0.5, can attain, with the best 3-element pro-
jective measurement in span(A2), up to ≈ 2.8% higher
capacity that C1 [10]. Since this is a Shannon capacity re-
sult, a classical outer code with codewords comprising of
sequences of states from A2 will be needed to achieve this
capacity I2 > C1. Using the MPE measurement on A2

(which can be analytically calculated [8], unlike the nu-
merically optimized projections in [10]), I2/C1 ≈ 1.0266
can be obtained. We have found the first structured re-
ceiver that attains superadditivity. It involves a unitary
operation on the [2, 3, 1] code (a beamsplitter) followed
by two separable single-symbol measurements (in this
case, a single-photon detector (SPD), and a Dolinar Re-
ceiver) (see Fig. 3), and can attain I2/C1 ≈ 1.0249 (see
Fig. 2). Its likely that none of these projective measure-
ments on A2 attain C2, since the single-shot measure-
ment that maximizes the accessible information in A2

could in general be a 6-element POVM [11].

An n-symbol superadditive JDR— A (2m−1, 2m, 2m−1)
BPSK Hadamard code, with n̄-mean-photons BPSK
symbols is unitarily equivalent to the (2m, 2m, 2m−1)
pulse-position-modulation (PPM) code—over an under-
lying on-off-keying binary signaling alphabet—with 2mn̄-
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FIG. 4: (a) The BPSK (7, 8, 4) Hadamard code is unitarily
equivalent to the (8, 8, 4) pulse-position-modulation (PPM)
code via a “Green Machine” built using twelve 50-50 beam-
splitters. (b) Bit error rate plotted as a function of n̄. The
plot marked “?” is not the bit error rate for any known code-
receiver pair; we just know that codes and physical joint de-
tection receivers that approach the Holevo limit must exist!

mean-photon-number pulses. The former is slightly more
space-efficient, since it achieves the same equidistant dis-
tance profile, but with one less symbol. Consider a BPSK
Hadamard code detected by a 2m-mode unitary transfor-
mation (with one ancilla mode, prepared locally at the
receiver, in the |α〉 state) built using (n log2 n)/2 50-50
beam splitters arranged in the “Green Machine” format,
followed by a separable n = 2m-element SPD-array, as
shown (for n = 8) in Fig. 4. The beam splitters un-
ravel the BPSK codebook into a PPM codebook, sep-
arating the photons into spatially-separate bins. This
receiver may be a more natural choice for spatial modu-
lation across n orthogonal spatial modes of a near-field
free-space channel. The ancilla mode at the receiver ne-
cessitates a local oscillator phase locked to the received
pulses, which is hard to implement. Since the num-
ber of ancilla modes doesn’t scale with the size of the
code, we can append the ancilla mode to the transmit-
ted codeword, so that the received ancilla can serve as
a pilot tone for our interferometric receiver. The Shan-
non capacity of this code-JDR superchannel—allowing
for outer coding over the erasure outcome (i.e., no clicks
registered by any detector)—is In(n̄) = (log2K/K)(1 −
exp(−2dn̄)) bits/symbol. In Fig. 2, we plot the envelope,
maxn In(n̄)/n̄ (the green dotted plot), as a function of n̄.
This JDR not only attains a much higher superadditive
gain than the n = 2 case we described above, it does not

need phase tracking and coherent optical feedback like
the Dolinar receiver[17]. In Fig. 4(b), we plot the bit er-
ror rates Pb(E) as a function of n̄ for uncoded BPSK, and
for the (255, 256, 128) BPSK Hadamard code, both when
detected using a symbol-by-symbol Dolinar receiver and
our structured JDR, respectively. The coding gain now
has two components, a (classical) coding gain, and an
additional joint-detection gain. In [12], we show a more
involved JDR construction for the first-order Reed Muller
codes, which attains higher superadditive capacity.

A great deal is known about binary codes that achieve
low bit error rates on the binary symmetric channel at
n̄ very close to the Shannon limit [7]. It would be in-
teresting to see how close to the Holevo limit can these
same codes perform, when paired with their respective
quantum MPE measurements. It will be useful to de-
sign codes with symmetries that allow them to approach
Holevo capacity, with the unitary U of the inner code’s
JDR in Fig. 1(a) realizable via a simple network of beam-
splitters, phase shifters, two-mode squeezers, and Kerr
non-linearities (which form a universal set for realizing an
arbitrary multimode bosonic unitary [13]) along with a
low-complexity outer code. The fields of information and
coding theory have had a unique history. Even though
many of its ultimate limits were determined in Shan-
non’s founding paper [14], it took generations of magnif-
icent coding theory research to ultimately find practical
capacity-approaching codes. Even though realizing high-
photon-efficiency communications on an optical channel
close to the Holevo limit might take a while, it certainly
does seem to be in the visible horizon.
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