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Biologically driven non-equilibrium fluctuations are often characterized by their non-Gaussianity
or by an “effective temperature”, which is frequency dependent and higher than the ambient tem-
perature. We address these two measures theoretically by examining a randomly kicked “particle”,
with a variable number of kicking “motors”, and show how these two indicators of non-equilibrium
behavior can contradict. Our results are compared with new experiments on shape fluctuations of
red-blood cell membranes, and demonstrate how the physical nature of the motors in this system
can be revealed using these global measures of non-equilibrium.
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Experimental and theoretical studies of biological sys-
tems confront the issue of active elements which give rise
to fluctuations that distinguish living matter from inan-
imate soft-matter systems. Examples range from molec-
ular motors in the cytoskeleton [1] and active membrane
pumps [2] to larger scale objects such as swimming bac-
teria [3]. As with other non-equilibrium systems such as
driven granular matter, it is unclear how to define useful
measures for non-equilibrium “activity”. Spontaneous
fluctuations may be compared with the response of the
system to small external perturbations, to define an ef-
fective temperature Teff using the fluctuation-dissipation
(FD) formalism [4]. In most cases Teff is frequency de-
pendent (unlike the thermal case), and is larger than the
ambient temperature. These features quantify the non-
thermal activity in the system. Another parameter that
is useful for characterizing deviations from equilibrium is
the non-Gaussianity κ of the distribution function [5–7].

In biological systems the nature of the microscopic ac-
tive elements is difficult to study directly. We demon-
strate how global statistical measures of activity can be
used to extract qualitative and quantitative properties of
the underlying molecular motors. We are motivated by
living cells, in which the activity is induced by multiple
motors throughout the system that are directly coupled
to local degrees of freedom. It is important to explore the
effects of the number of motors and their level of activity
on the non-equilibrium nature of the fluctuations [8].

One well-studied active system is the membrane of the
red-blood cell (RBC). However, the nature of the molec-
ular motors in this system is still far from being well
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understood. We question how Teff and κ correlate (or
not) with each other, and which properties of the non-
equilibrium system do they probe. We focus on RBC
and present new experimental measurements, but obtain
results on the non-equilibrium statistical mechanics of
active systems in general. We introduce a simple model
of a randomly kicked “particle”, with a variable num-
ber of kicking “motors” (force producing elements). Our
generalized particle and motors may represent different
objects in different systems, and we will be more spe-
cific when comparing to RBC experiments. We compute
both Teff and κ, and identify situations in which these
two non-equilibrium indicators contradict.
Model. We consider the following overdamped

Langevin equation for the velocity v = ẋ,

v̇ = −λv + fT + fA + fR. (1)

λ is the damping coefficient. The thermal force fT (t) is
an uncorrelated Gaussian white noise: 〈fT (t)fT (t

′)〉 =
2λTBδ(t − t′), with TB the ambient temperature, and
Boltzmann’s constant set to kB = 1. For the active force
fA(t) we assume that each of the Nm motors produces
pulses of force ±f0, of duration ∆τ . We assume sym-
metry with respect to the force direction, which is mo-
tivated by experimental observations of nearly symmet-
ric active fluctuations of cells [9]. While the pulses turn
on randomly as a Poisson process with an average wait-
ing time τ , unless otherwise stated, we take a constant
pulse length ∆τ . The power stroke of molecular motors
is a realization for such a relatively well-defined impulse
length [10]. We will also consider stochastic pulse lengths
with an arbitrary distribution P (∆τ), and show that if
P (∆τ) is Poissonian, the force correlations reduce to the
shot-noise form studied in [11].
To measure the linear response χxx of the particle po-

sition x, we apply a small force fR = F0e
iωt, and find
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that the position is perturbed as 〈δx(t)〉 = χxx(ω)F0e
iωt,

with χxx(ω) = (ω(iλ− ω))−1, δx being the small change
in position, irrespective of the active force [12].

Due to the linearity of Eq. (1), and since fT and fA
are uncorrelated, the velocity autocorrelation is [12]

Svv(ω) =
2λTB

λ2 + ω2
+

2Nmv20λ
2 [1− cos(ω∆τ)]

(τ +∆τ)ω2(λ2 + ω2)
. (2)

where v0 = f0/λ is the asymptotic velocity that the par-
ticle approaches due to the activity of a single motor.

Effective Temperature. In equilibrium, the FD theorem
connects the imaginary part of χxx to the position au-
tocorrelation, Sxx(ω) = −ω−2Svv(ω), by: Im [χxx(ω)] =
ω
2T

Sxx(ω). For non-equilibrium steady states we define a
frequency-dependent effective temperature

Teff(ω) ≡
ωSxx(ω)

2Im [χxx(ω)]
= TB +

Nmv20λ [1− cos(ω∆τ)]

(τ +∆τ)ω2
.(3)

Note that the time between pulses enters only through
the density of pulses per unit time. Hence this result
does not depend on the distribution of waiting times be-
tween pulses, but only on its average, τ . Moreover, our
results may be extended to a stochastic pulse length [12].
In particular, for Poissonian ∆τ we obtain shot-noise
force correlations 〈fA(t)fA(0)〉 = 〈∆τ〉−1 exp (−t/〈∆τ〉)

and Teff = TB+Nmv20λ(τ+〈∆τ〉)−1
(

ω2 + 〈∆τ〉−2
)−1

/2.
Note that alternative definitions of the effective temper-
ature have appeared in the context of granular gases [13].
Unlike those systems, here we do not identify a non-
equilibrium situation where Teff(ω) = const. In the high-
frequency limit the active contribution vanishes, so that
Teff → TB. Around ω = 1/∆τ , Teff rises and as ω → 0,
it approaches a constant value in the low frequency limit
(ω ≪ ∆τ−1): Teff(0) = TB +Nmv20λ∆τ2/(τ +∆τ).

Velocity Distribution and Kurtosis. In Fig. 1a we
plot the velocity distribution function P (v) from nu-
merical simulations. The distribution is highly non-
Gaussian for a single motor. Interestingly, for small
λ∆τ and in the presence of multiple motors, P (v)
may retain its Gaussian form, even though the sys-
tem is very far from equilibrium, as can be seen in
the strong frequency dependence of Teff(ω), and in the
fact that 〈v2〉 is significantly larger than TB. For our
model we can exactly calculate [12]: 〈v2〉 = TB +
[

Nmv20
(

λ∆τ + e−λ∆τ − 1
)]

/ [λ (τ +∆τ)]. Let us em-
phasize that 〈v2〉 6= Teff(0), but rather in the limit
λ∆τ → 0 we find that 〈v2〉 = 2Teff(0).

We measure the non-Gaussianity by the kurtosis, κ ≡
〈v4〉/〈v2〉2, which we plot in Fig. 1b as a function of the
number of motors and the activity quantified by the prob-
ability of a single motor to be on: pon ≡ ∆τ/(τ + ∆τ).
To calculate 〈v4〉 for a single motor, as long as λτ ≫ 1,
we ignore overlaps between the contributions of consec-
utive pulses [12]. A simple model which works rather
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FIG. 1: (a) Velocity distribution function. Thermal (dash-
dot straight line with slope T−1

B
visible in the inset), Nm = 1

(solid) and 10 (dashed). λ = 50, ∆τ = 0.1, τ = 0.15, TB =
10−4, v0 = 0.02. Note the peak at v0 for Nm = 1. Dotted
line: Nm = 10 using TB = 10−7 and λ = 150. The kurtosis
for the active cases are: κ/κG = 0.85, 0.99, 0.96, respectively.
(b) Kurtosis vs motor activity (varied by changing τ ) from
numerical simulations (symbols), compared to the analytic
expression ignoring pulse overlaps (dotted lines), and to the
model of shifted Gaussians (solid lines).

well at all number of motors, approximates the distri-
bution as a sum of shifted thermal Gaussians [12]. As
long as λ∆τ ≫ 1, the contribution to the velocity distri-
bution due to the rise and decay before and after each
pulse is small, and this model gives a very good descrip-
tion (see Fig. 1b). In the opposite limit of λτ ≪ 1 and
λ∆τ ≪ 1 the velocity distribution approaches a Gaus-
sian. The value of the kurtosis measures the spread of
the distribution; larger values correspond to a distribu-
tion that is wider than a Gaussian, and vice versa.

The most outstanding result is the non-monotonic de-
pendence of κ on pon. Compared to a dead system
(pon = 0), as the motor activity is turned on, and when
the active velocity v20 > TB, the velocity distribution gets
more populated at higher values, hence κ increases. In
the other limit of pon → 1, κ is necessarily smaller than
the Gaussian value κG = 3, since it is a contribution of
shifted Gaussians. From these two limits we conclude
that κ is necessarily a non-monotonic function of pon. In
fact, κ can retain its κG value even for a non-equilibrium
system (pon > 0). For the distributions shown in Fig. 1a,
κ is close to κG, except for the single motor, even when
the distribution is visibly non-Gaussian (Nm = 10). As
a function of Nm, at small pon the deviation from κG

increases with Nm (Fig. 1b), since the high velocity tails
are more populated. In the other limit of pon → 1, the
distribution approaches a Gaussian with increasing Nm,
which is a manifestation of the central limit theorem.

Comparing with Teff we find that both measures of
non-equilibrium behavior increase with increasing activ-
ity in the pon → 0 limit, while as pon → 1 they contradict.
BothNm and pon are simply multiplied to give the ampli-
tude of the active contribution to Teff , while κ is a more
complicated function of these two parameters.

Experiments. The activity of the RBC membrane was
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FIG. 2: (a) Relative kurtosis vs wavevector: Squares (circles)
are for natural (starved for 6hrs) RBC. κG(q) was extracted
from the data on ATP-depleted cells, starved for 24hrs. (b)
Calculated dependence of κ from our model, mapped to q-
space (using pon = 0.07). The dimensionless q is determined
by varying the number of motors (Nm = 1, 2...30) [12].

recently measured in two different experiments, which
found indications for non-equilibrium fluctuations when
the chemical energy source of ATP is available. Be-
fore comparing with our model we note that the mem-
brane undulations may be described by the following
over-damped analogue of Eq. (1) [16],

ḣq = −λqhq +Oq [FT (q, t) + FA(q, t)] (4)

where hq is the amplitude of the membrane deflection
at wavevector q, λq = Oq(κ̄q

4 + σq2) is the response of
the membrane due to the elastic restoring forces of cur-
vature and tension (with bending modulus κ̄ and mem-
brane tension σ), Oq = (4ηq)−1 is the Oseen interaction
kernel for a flat membrane in free fluid and η the viscos-
ity of the surrounding fluid. The thermal force satisfies
〈FT (q, t)FT (−q, t′)〉 = 2TBO

−1
q δ(t − t′), and FA(q, t) is

the Fourier transform of the active force. For the ac-
tive forces we consider two cases; a direct force and a
curvature-force [11], both with shot-noise correlations.
The first experiment [7] measured the spatial depen-

dence of the membrane fluctuations, and extracted the
probability distribution P (hq), from which the kurto-
sis was obtained. Here, κ > κG was found for ATP-
containing cells. In Fig. 2a we present new data showing
that κ increases with q and with the ATP concentra-
tion [12]. Comparing these observations with our model
(Fig. 1) this indicates that the RBC has pon close to zero,
which means that τ ≫ ∆τ .
Next, we compute the q-dependence of the kurtosis us-

ing our single-particle model. We map each mode q of
the membrane to a single particle as follows; the number
of motors that act on the membrane area involved in the
motion of mode q is given by: Nm ∝ q−2 (the number
of motors in the membrane area of wavelength 2π/q, as-
suming they are uniformly distributed on the membrane),
FA ∝ q0, q2 (direct and curvature force respectively [11])
and 〈F 2

T 〉 ∝ q [12]. Figure 2b shows that our calculation
predicts that κ → κG as q → 0, in agreement with the
experiment (Fig. 2a). For small q, Nm increases, and we
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FIG. 3: Effective temperature for a free membrane of lateral
size L = 8µm, driven by the direct force (solid line) and
curvature force (dashed line). Inset: L = 50µm.

are in the low pon regime. Note that if the RBC had
large pon, κ would decrease with increasing q. The peak
in the experimental data may indicate the wavelength
corresponding to a single active unit (“motor”) in the
RBC cytoskeleton [7]. Note that using our single-particle
model for the dynamics of an extended object such as the
membrane is only a qualitative approximation.
Thus, the motors are distributed throughout the RBC

membrane, and each motor has a long recovery time.
These findings agree with the proposed mechanism of
membrane fluctuations [14]; ATP induces the release of
membrane-anchored filaments, the release event (∆τ) is
fast compared to the time it takes the released polymer
to find its anchor on the membrane and re-attach (τ).
Another experiment [15] measured the frequency de-

pendence of the height fluctuations at a single point on
the RBC membrane, and found a 3-7 fold increase in
low frequency (f < 10Hz) fluctuations compared to cells
depleted of ATP. The way to decouple the ATP-induced
changes to the elastic moduli [14] from the increase in Teff

is to measure the response in addition to the fluctuations,
and this awaits future experiments. In Fig. 3 we plot the
calculated effective temperature of the system, as defined
by Eq. (3) [12]. Teff approaches TB for large frequencies
ω ≫ τ−1, and increases for frequencies ω ≤ ∆τ−1. There
is even a peak in Teff for the curvature-force. The val-
ues of Teff reach up to 10TB, and depend on the lateral
size of the membrane L; in the ω → 0 limit we find that
Teff,direct − TB ∝ q−1

min
while Teff,curv − TB ∝ qmin, where

qmin = 2π/L (Fig. 3 inset). By comparing the calculated
and observed [15] frequency dependence of Teff and the
power spectral density [12], we can estimate the proper-
ties of the active “motors” in this system: ∆τ ≃ 100msec,
ponf

2
0 ≃ (κ̄/r)2, where r ≃ 100nm, κ̄ ≃ 90kBT, and the

motor density n = 1/r2. These parameters agree with
the physical interpretation of the active force as arising
from “pinching” of the membrane by a cytoskeleton net-
work of spectrin filaments [14].
We demonstrate in Fig. 3 that a future measurement

of Teff can be used to distinguish between different mod-
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els of active forces in the membrane, and can therefore
add important information about the physical nature of
the motor producing these forces. In particular, a non-
monotonic behavior will favor the curvature mechanism,
while a simpler step-like behavior will support the direct
force. For the curvature force, the effective temperature
decreases with decreasing ω, and even approaches the
equilibrium value at ω → 0 for a large membrane domain
(L → ∞). Another indication for an increase of effective
temperature with frequency was found for a driven gran-
ular system [17]. For the RBC membrane this behavior
is driven by the fact that the curvature force couples
to the fluctuation modes of the membrane through a q2

term [11], which represents in q-space the force due to
a localized induced curvature. This force therefore di-
minishes in its relative amplitude as the wavelength in-
creases, leading to the vanishing of the active component
in the ω → 0 limit. We expect this feature to appear in
many spatially extended systems where the driving force
decreases with increasing wavelength.

Conclusion. We presented a simple model for active
systems, for which we can derive two measures to char-
acterize its non-equilibrium nature. These two measures
do not always agree. In biological systems the activity
is often driven by multiple molecular motors that couple
to internal degrees of freedom. In such systems we ex-
plored the characteristics of the non-equilibrium fluctu-
ations in the presence of multiple motors. We find that
in the limit of many motors the kurtosis can return to
the value of a Gaussian distribution, while the effective
temperature may still exhibit strong frequency depen-
dence. We showed that Gaussian distributions may arise
for active systems even for a small number of motors,
while large deviations from Gaussian distributions can
be maintained even for large number of motors. Note
that a non-Gaussian distribution is not a proof of non-
equilibrium, as it could also arise due to nonlinearities in
a mechanical system, such as position dependent damp-
ing. The effective temperature and the kurtosis that we
calculated are explicitly dependent on the number of mo-
tors (Nm) and their intrinsic properties (f0, τ,∆τ). Our
present analysis gives a detailed and general treatment,
for any type of pulse-length distribution.

Finally, we compared the results of our model with
recent observations of ATP-driven activity in RBC, and
demonstrated how they can give insight to the underlying
active mechanism. In particular, we showed how funda-
mental physical properties of the elusive molecular motor
of the RBC membrane may be unraveled by comparing
these observables with our theoretical model. Future ex-
periments could use the calculated properties to better
characterize the nature of the active forces in various cel-
lular membranes. We expect our results to be useful for
the analysis of other active systems, both biological [6]
and non-biological [18, 19]. From our model we reach
the following more general conclusion: when a spatially

extended system is driven by external forces, the effec-
tive temperature defined through the FD relation can be
a non-monotonic function of the frequency. If the cou-
pling of the external active forces is stronger for smaller
wavelengths, then the effective temperature may develop
a non-monotonous dependence on frequency.
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