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We present a simple prescription to flatten isolated Bloch bands with non-zero Chern number. We
first show that approximate flattening of bands with non-zero Chern number is possible by tuning
ratios of nearest-neighbor and next-nearest neighbor hoppings in the Haldane model and, similarly,
in the chiral-π-flux square lattice model. Then we show that perfect flattening can be attained with
further range hoppings that decrease exponentially with distance. Finally, we add interactions to
the model and present exact diagonalization results for a small system at 1/3 filling that support
(i) the existence of a spectral gap, (ii) that the ground state is a topological state, and (iii) that the
Hall conductance is quantized.

In a seminal paper, Haldane [1] has shown that non-
interacting electrons hopping on a honeycomb lattice can
exhibit the integer quantum Hall effect (IQHE) with-
out the Landau levels induced by a uniform magnetic
field, provided the system breaks time-reversal symme-
try (TRS). In that model, electrons hop with a real-
valued uniform nearest-neighbor (NN) amplitude of mag-
nitude t1 that preserves TRS, as well as complex-valued
next-nearest neighbor (NNN) amplitudes with the uni-
form magnitude t2 that break TRS. A non-vanishing t2
generically opens a band gap at the Fermi-Dirac points of
graphene (half-filling). This band gap results in the first
Chern numbers taking opposite values of magnitude 1
on the upper and lower bands. Consequently, the model
exhibits an IQHE at half-filling.

Given the fact that a band insulator can support the
IQHE without a magnetic field, a natural question that
we address in this paper is whether a fractional quan-
tum Hall effect (FQHE) is also possible in an interacting
lattice model without a magnetic field. For the usual
FQHE in an uniform magnetic field, all Landau levels
share the same first Chern number, ±1 depending on
the orientation of the uniform magnetic field. More-
over, in the absence of disorder, all Landau levels are flat
(i.e., dispersionless) and thus can accommodate, when
partially filled, an exponentially large number of Slater
determinants, from which incompressible liquids are se-
lected by interactions at some special filling fractions.
Haldane’s model fulfills the first ingredient for the FQHE:
non-vanishing first Chern numbers for the single-particle
Bloch bands. We are going to construct two-dimensional
lattice models without magnetic fields that also satisfy
the second ingredient for the FQHE: band flattening.

There is a long history of flat-band models. They have
been studied since the 1970s in amorphous semiconduc-
tors [2–4], and understood using projection operators [5].
More recently they have been studied on kagome, honey-
comb, and square lattices [6–11]. In Ref. [10] flat bands
were isolated by gaps, and the question of whether it is
possible to have a flat band with non-zero first Chern
number was raised. We shall answer this question affir-

matively. We then add interactions and show evidence
that the many-body state is a topological state with frac-
tional Hall conductance at 1/3 filling.

Our starting point are two-dimensional local lattice
models describing the hopping of spinless fermions. In
the spirit of Haldane’s model, we restrict the lattice mod-
els to those with only two Bloch bands and enforce lo-
cality by only allowing NN and NNN hoppings. We will
show that, by varying the ratio of the NNN to NN hop-
pings, we can deform the bands to make them flatter.
The characteristic measure for the flatness of a Bloch
band is here the ratio of the bandwith to the band gap.
We then show that this criterion for flatness can be sat-
urated to the ideal limit of zero for the valence band by
including arbitrary range hoppings. However, the flat-
tened single-particle Hamiltonian still preserves locality
in the sense that the hopping amplitudes decrease expo-
nentially with the distance between any two lattice sites.

Consider the non-interacting two-band Bloch Hamilto-
nian of the generic form

H0 :=
∑
k∈BZ

ψ†kHkψk, Hk := B0,kσ0 +Bk · σ. (1a)

Here, BZ stands for the Brillouin zone, ψ†k =(
c†k,A, c

†
k,B

)
, where c†k,s creates a Bloch states on sub-

lattice s = A,B, and the 2× 2 matrices σ0 and σ are the
identity matrix and the three Pauli matrices acting on
the sublattice indices. If we define

B̂k :=
Bk
|Bk|

, tanφk :=
B̂2,k

B̂1,k

, cos θk := B̂3,k, (1b)

we can write the eigenvalues of HamiltonianHk as ε±,k =
B0,k±|Bk| and for the corresponding orthonormal eigen-
vectors

χ+,k =

(
e−iφk/2 cos

θk
2

e+iφk/2 sin
θk
2

)
, χ−,k =

(
e−iφk/2 sin

θk
2

−e+iφk/2 cos
θk
2

)
.

(1c)
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Two examples of Hamiltonians of the the form (1a) are
the following. Example 1: The honeycomb lattice. We
introduce the vectors at1 = (0,−1), at2 =

(√
3/2, 1/2

)
,

at3 =
(
−
√

3/2, 1/2
)

connecting NN and the vectors bt1 =
at2−at3, bt2 = at3−at1, bt3 = at1−at2 connecting NNN from
the honeycomb lattice depicted in Fig. 1(a). We denote
with k a wave vector from the BZ of the reciprocal lattice
dual to the triangular lattice spanned by b1 and b2, say.
The model is then defined by the Bloch Hamiltonian [1]

B0,k := 2t2 cos Φ

3∑
i=1

cosk · bi, (2a)

Bk :=

3∑
i=1

 t1 cosk · ai
t1 sink · ai

−2t2 sin Φ sink · bi

 , (2b)

where t1 ≥ 0 and t2 ≥ 0 are NN and NNN hop-
ping amplitudes, respectively, and the real numbers ±Φ
are the magnetic fluxes penetrating the two halves of
the hexagonal unit cell. For t1 � t2, the gap ∆ ≡
minkε+,k − maxkε−,k is proportional to t2. The width
of the lower band is δ− ≡ maxkε−,k − minkε−,k. The
flatness ratio δ−/∆ is extremal for the choice cos Φ =

t1/(4t2) = 3
√

3/43, yielding an almost flat lower band
with δ−/∆ = 1/7 [see Fig. 1(c)]. Example 2: The square

lattice. We introduce the vectors xt ≡
(
1/
√

2, 1/
√

2
)
,

and yt ≡
(
−1/
√

2, 1/
√

2
)

connecting NNN from the
square lattice as depicted in Fig. 1(b). We denote with
kt =

(
kx, ky

)
a wave vector from the BZ of the recipro-

cal lattice dual to the square lattice spanned by x and y.
The model is then defined by the Bloch Hamiltonian [12]

B0,k := 0, (3a)

B1,k + iB2,k := t1 e
−iπ/4

[
1 + e+i(ky−kx)

]
(3b)

+ t1 e
+iπ/4

[
e−ikx + e+iky

]
,

B3,k := 2t2
(
cos kx − cos ky

)
, (3c)

where t1 ≥ 0 and t2 ≥ 0 are NN and NNN hopping ampli-
tudes, respectively. The flatness ratio δ−/∆ is extremal

for the choice t1/t2 =
√

2, yielding two almost flat bands
with δ−/∆ ≈ 1/5 [see Fig. 1(d)].

The first Chern-numbers for the bands labeled by ± in
Eq. (1c) are given by

C± = ∓
∫

k∈BZ

d2k

4π
εµν

[
∂kµ cos θ(k)

] [
∂kνφ(k)

]
. (4)

They have opposite signs if non-zero. All the information
about the topology of the Bloch bands of a gaped sys-
tem is encoded in the single-particle wave functions. For
example, first Chern numbers depend solely on the eigen-
functions. Haldane’s model (2) and the chiral-π-flux (3)
are topologically equivalent in the sense that both have
two bands with Chern numbers ±1.
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FIG. 1. (Color online) (a) Unit cell of Haldane’s model on the
honeycomb lattice: The NN hopping amplitudes t1 are real
(solid lines) and the NNN hopping amplitudes are t2e

i2πΦ/Φ0

in the direction of the arrow (dotted lines). The flux 3Φ
and −Φ penetrate the dark shaded region and each of the
light shaded regions, respectively. For Φ = π/3, the model
is gauge equivalent to having one flux quantum per unit cell.
(b) The chiral-π-flux on the square lattice, where the unit cell
corresponds to the shaded area. The NN hopping amplitudes
are t1e

iπ/4 in the direction of the arrow (solid lines) and the
NNN hopping amplitudes are t2 and −t2 along the dashed and
dotted lines, respectively. (c) The band structure of Haldane’s

model for cos Φ = t1/(4t2) = 3
√

3/43 with the flatness ratio
1/7. (d) The band structure of the chiral-π-flux for t1/t2 =√

2 with the flatness ratio 1/5. The lower bands can be made
exactly flat by adding longer range hoppings.

To enhance the effect of interactions, highly degener-
ate (i.e., flat) bands are desirable. It is always possible to
deform the Bloch Hamiltonian (1a) so as to have one flat
band with the energy −1, say, while preserving the eigen-
spinors χ±,k (1c). Indeed, this is achieved by turning the
Bloch Hamiltonian (1a) into

Hflat
k :=

Hk
ε−,k

. (5)

Note that whenever B0,k ≡ 0, the Hamiltonian (1a) has
the spectral symmetry ε+,k = −ε−,k so that both bands

of Hflat
k = B̂k ·σ are completely flat. This spectral sym-

metry applies to the chiral-π-flux (3) but not to Haldane’s
model (2) unless Φ = ±π/2.

Generically,Hflat
k follows from a lattice model for which

the hopping amplitudes are non-vanishing for arbitrary
large separations. If, however, the hopping amplitudes
decrease sufficiently fast with the separation, locality is
preserved. To estimate the decay of the hopping ampli-
tudes with the separation between any two sites in the
flattened chiral-π-flux model (3), we calculate the decay
of the Fourier coefficients An,n′ of

1

|ε±,k|
=

∞∑
n,n′=0

An,n′ cosnk+ cosn′k−, (6)
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where k± ≡ kx ± ky. Because

ε2
±,k =

(
2t21 − t22

) (
2 + cos k+ + cos k−

)
+ t22

(
3 + cos k+ cos k−

)
,

(7)

it is sufficient to consider the Fourier coefficients Ãn of

1√
1 + α cos k

=

∞∑
n=0

Ãn cosnk, for −1 < α < 1. (8)

In the limit n � 1, one finds that Ãn decays exponen-
tially with n. We conclude that for any fixed n, the coef-
ficients An,n′ decay exponentially with n′ and vice versa
for n, iff |α| < 1. Flattening the energy bands preserves
the locality of the chiral-π-flux model (3).

The fact that we have engineered single-particle wave-
functions in a flat Bloch band that support a Chern num-
ber ±1 is one step in mimicking the FQHE. However, be-
cause of lattice effects, it is not a given that interactions
lead to a many-body ground state supporting the FQHE.
In fact, even when there is a uniform magnetic field, the
combination of lattice effects and interactions is not well
understood upon increasing the magnetic flux threading
the elementary lattice unit cell. In Refs. [13, 14], for ex-
ample, the possibility of a FQHE induced by interactions
for the Hofstadter problem, NN hopping with a uniform
flux threading each elementary plaquette of the square
lattice, was studied numerically. While the overlap be-
tween the Laughlin states on the torus and the lattice
many-body ground states was close to unity when the
plaquette flux is much smaller than the flux quantum,
this overlap decreases when the plaquette flux becomes
of the order of one quarter of the flux quantum. It is
thus imperative to study how interactions lift the macro-
scopic degeneracy of a fractionally filled flat Bloch band
and whether a gapped topological ground state emerges.

Two distinctive properties of such a ground state at fill-
ing fraction ν (where ν−1 is an odd integer) and with peri-
odic boundary conditions (toroidal geometry) are (i) the
ν−1-fold topological degeneracy of the ground state man-
ifold and (ii) the quantization of the Hall conductance
σxy in units of νe2/h. The Hall conductance is related
to the Chern-number C of the many-body ground state
|Ψ〉 as σxy = Ce2/h [15]. Conventionally, the Chern-
number is evaluated using twisted boundary conditions
|Ψγ(r + Nxx)〉 = eiγx |Ψγ(r)〉 and |Ψγ(r + Nyy)〉 =

eiγy |Ψγ(r)〉, where γt = (γx, γy) is the twisting angle and
Nx ×Ny the number of unit cells. The Chern number is
then given by [16]

C =
1

2πi

∫
γ∈[0,2π]2

d2γ ∇γ ∧
〈
Ψγ
∣∣∇γ

∣∣Ψγ〉 . (9a)

Here, we introduce

C̃ =
1

2πi

∫
k∈BZ

d2k n−,k

[
∇k ∧

(
χ†−,k∇kχ−,k

)]
(9b)

as a second way to calculate the Chern number, where
n−,k = 〈Ψ|c†k,−ck,−|Ψ〉 is the occupation number of the
single-particle Bloch state in the lower (−) band with
wave vector k evaluated in the many-body ground state.
We can show that both formulas are equivalent, i.e.,
C = C̃. To this end, one expands the many-body wave
function in a sum over Slater determinants and applies
a gauge transformation to the single particle states to
remove the twist in the boundary conditions.

We close this Letter with an exact diagonalization
study to show the existence of a gapped topological
ground state for the chiral π-flux phase (3) in presence of
interactions. We consider an interaction defined by the
repulsive two-body NN potential Vi,j according to

Hint :=
1

2

∑
i,j

ρiVi,jρj ≡ V
∑
〈ij〉

ρiρj , V > 0. (10)

Directed NN bonds of the square lattice Λ = A∪B made
of the open and filled circles of Fig. 1(b) are here denoted
by 〈ij〉, while ρi is the occupation number on the site
i ∈ Λ.

We also drive the model trough a topological phase
transition to establish that a gapped topological many-
body ground state results form the topological nature of
the model. To this end, we add a sublattice-staggered
chemical potential 4µs to the single-particle Hamilto-
nian (1) by replacing B3,k → B3,k+4µs in Eq. (3). Then,
the two non-interacting bands have Chern number ±1 for
|t2/µs| > 1 and a vanishing Chern number for |t2/µs| < 1.
The topological phase transition at |t2/µs| = 1 forces the
single-particle spectral gap to close and the flattening of
the bands is ill-defined at that point [α = 1 in Eq. (8)].

For a 3×6 lattice, we find a unique ground state that is
separated by a gap of the order of the interaction strength
V at filling ν = 1/3 [see Fig. 2(a)]. This state loses
its clear separation in energy from the other states at
the topological phase transition |t2/µs| = 1 and another
gapped ground state is obtained for |t2/µs| < 1. Based
on (i) the topological degeneracy and (ii) the quantized
Hall conductance, we will now argue that the first state
is a topological many-body state while the latter state is
topological trivial.

(i) Due to translational invariance, the Hamiltonian
does not couple states with different center of mass mo-
mentaQ := k1+. . .+kN , where ki , i = 1, · · · , N are the
single-particle momenta of an N -particle state. At 1/3
filling of the 3 × 6 lattice, the particle number N = 6 is
commensurate with the lattice dimensions and all three
topologically states have the same Q. As a consequence,
their topological degeneracy is lifted and a unique ground
state appears. We can now use twisted boundary condi-
tions to probe the topological nature of the ground state:
varying γx between 0 and 2π is equivalent to the adiabatic
insertion of a flux quantum in the system. During this
process, a topological ground state with C = 1/3 should
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FIG. 2. (Color online) (a) The lowest eigenvalues of Hflat
0 +

Hint for the chiral π-flux phase obtained from exact diag-
onalization for 6 particles on a 3 × 6 lattice (1/3 filling),
normalized by the bandwidth Eb. The parameters t2 and
µs of Hflat

0 interpolate between topological (|t2| > |µs|) and
non-topological (|t2| < |µs|) single particle bands. Here,
g := (2/π) arctan |t2/µs| and the energies are measured rela-
tive to the energy of the single particle band. (b) The lowest
eigenvalues in the center of mass momentum sector of the
ground state of Hflat

0 +Hint with twisted boundary conditions
as a function of the twisting angle γx for µs = 0, t2 = t1/

√
2.

The level crossings indicate the topological non-trivial nature
of the three lowest states. (c) Same as (b), but for µs = t1/

√
2,

t2 = 0. The ground state is topologically trivial.

undergo two level crossings with the other two gapped
topological states [17]. Indeed, we find these level cross-
ings for the gapped ground state when the model has
topological single-particle bands [Fig. 2(b)], whereas no
level crossings are found otherwise [Fig. 2(c)].

(ii) We have also calculated the Chern number of the
gapped ground state for µs = 0, t2 = t1/

√
2 with the

two equivalent formulas (9a) and (9b). We find C =

0.29 and C̃ = 0.30 and attribute the deviations from
C = 1/3 to the limitations of the small system size. For
the topological trivial model with µs = t1/

√
2, t2 = 0,

we find that C and C̃ vanish to a precision of 10−6 and
10−3, respectively.

In summary, we have proposed a simple recipe to de-
form any non-interacting lattice model so as to obtain
flat bands, while preserving locality. We flattened the
bands of the chiral π-flux phase and then lifted the result-
ing macroscopic ground state degeneracy with repulsive

interactions. Via exact diagonalization, we have shown
that a FQH-like topological ground state is obtained at
1/3 filling. This ground state, that is not well described
by Laughlin-type wave-functions, will be further studied
in future works.

After completion of this work, we became aware of
Refs. [18] and [19] in which similar topological flat-band
models are discussed. Subsequently, as this Letter was
revised, Ref. [20] appeared with exact diagonalization re-
sults that are consistent with our findings.
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