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We report the theoretical discovery of a class of 2D tight-binding models containing nearly-flat
bands with nonzero Chern numbers. In contrast with previous studies, where nonlocal hoppings
are usually required, the Hamiltonians of our models only require short-range hopping and have the
potential to be realized in cold atomic gases. Due to the similarity with 2D continuum Landau levels,
these topologically nontrivial nearly-flat bands may lead to the realization of fractional anomalous
quantum Hall states and fractional topological insulators in real materials. Among the models we
discover, the most interesting and practical one is a square-lattice three-band model which has only
nearest-neighbor hopping. To understand better the physics underlying the topological flat band
aspects, we also present the studies of a minimal two-band model on the checkerboard lattice.
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In fermionic systems, a flat band (a macroscopically
degenerate manifold of single-particle states) plays an
important role in the study of strongly correlated phe-
nomena, due to the vanishing bandwidth. One way to
achieve a flat band is via the destructive interference
of electron hoppings, which gives rise to moderately lo-
calized single-particle eigenstates [1–9]. Landau levels,
which are formed when a magnetic field is applied to
a 2D electron gas (2DEG), can be considered as another
type of flat bands arising in continuum rather than lattice
2D systems. Different from the examples above, a Lan-
dau level has a nontrivial topological index (the Chern
number). When an integer (or certain fractional) number
of Landau levels is filled, the system turns into an insu-
lator with nontrivial topology, known as the integer (or
fractional) quantum Hall effect (IQHE or FQHE) [10].

In addition to 2DEG, efforts have also been made to
realize IQH and FQH effects in lattice systems without
magnetic field. The first and most celebrated example
is the anomalous quantum Hall state proposed by Hal-
dane [11]. More recently, a new class of topological states,
the time-reversal invariant topological insulators charac-
terized by a Z2 topological index is discovered in various
lattice systems (see the recent reviews of Refs. [12, 13]
and references therein). These lattice topological states
share strong similarities with the IQH states. However,
the lattice counterpart of the fractional quantum Hall
states has not yet been discovered. One of the key chal-
lenges to reach a fractional topological state in lattice
models lies in the fact that the bandwidth of a topologi-
cally nontrivial band in these models is usually compara-
ble or even larger than the band gap. Thus, at fractional
filling, the system is expected to be a Fermi liquid while
interaction effects are just subleading corrections. There-
fore, a flat band with nontrivial topology is expected to
be the key in realizing lattice fractional topological states
similar to the FQHE. Recently, there have been some at-

tempts to find completely flat bands with nonzero Chern
numbers in 2D lattice models [14, 15]. However, it turned
out that, in all examples except in the quasi-one dimen-
sional thin torus [14], flat bands have zero Chern number.

Since a topological index remains invariant under adi-
abatic deformations as long as the gap is preserved, a
straightforward way to form such a flat band is to use
the spectral flattening trick, i.e., an adiabatic transfor-
mation from the original Hamiltonian to a new one with
completely flat bands. This technique is used in the clas-
sification of topological insulators and superconductors
[16–18]. However, such a procedure may results in long-
range hopping making the Hamiltonian nonlocal [19].

In real materials, the exact flatness for a band is
not a physical requirement and we can relax the con-
straint a little bit by allowing the band to have a nonzero
bandwidth but requiring the bandwidth to remain much
smaller than the band gap. Unfortunately, to the best
of our knowledge, even such models have never been re-
ported. In this letter, we propose a generic scheme to
produce such kind of models based on a special class
of tight-binding Hamiltonians with short-range hoppings.
The band structure of these models contains nontrivial
band touchings with quadratic dispersions (in contrast to
the linear ones near a Dirac point), which are protected
by the time-reversal and lattice point-group symmetries
as well as the nontrivial topology [20, 21]. When the
time-reversal symmetry is broken, a band gap opens up at
the band touching point and the bands can have nonzero
Chern numbers. By slightly tuning the short-range hop-
ping strength, we find that some of the topologically non-
trivial bands can become nearly-flat. We believe that
this mechanism is very general and applies to any tight-
binding model with quadratic band touchings. Surpris-
ingly, in some of these models, this nearly-flat band sit-
uation is found even with only nearest-neighbor (NN)
hopping. These nearly-flat bands have a strong analogy
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to the Landau levels in 2DEG and thus may set the stage
for exploring new fractional topological states.

Topological flat band with extremely short-range hop-

ping: the square-lattice model — Consider a square lat-

tice with two space-inversion odd and one space-inversion
even orbitals per site, e.g. the px, py and dx2−y2 orbitals.
This model has been demonstrated in optical lattice sys-
tems [21]. In k-space, the Hamiltonian is

H =
∑

~k

(

d†~k
, p†

x,~k
, p†

y,~k

)





−2tdd(cos kx + cos ky) + δ 2itpd sin kx 2itpd sin ky

−2itpd sin kx 2tpp cos kx − 2t′pp cos ky i∆
−2itpd sin ky −i∆ 2tpp cos ky − 2t′pp cos kx









d~k

p
x,~k

p
y,~k



 ,

where d~k
, p

x,~k
and p

y,~k
are the fermion annihilation op-

erators at momentum ~k and the lattice constant is set
to unity. The NN hoppings between various orbitals are
described by the hopping amplitudes tdd, tpd, tpp and t′pp.
The δ term measures the energy difference between p and
d orbitals. The term (∆) breaks the symmetry between
the states with angular momentum ±1 (px ± ipy). This
term breaks the time-reversal symmetry and allows the
Chern number to take a nontrivial value.

At ∆ = 0, the time-reversal symmetry is preserved
and two of the three bands cross at the center (corner)
of the Brillouin zone (BZ). For ∆ > 0, the bands be-
come gapped. In order to ensure the “flatness” of the top
band, we require the energies are equal at the Γ point,
M point and K point, which implies δ = −4tdd + 2tpp +
∆ − 2tpp∆/(4tpp + ∆) and t′pp = tpp/(4tpp + ∆). For
simplicity, we set tdd = tpd = tpp = 1. By varying ∆, we
found that the ratio of bandwidth/band gap is minimized
(≃ 1/20) at ∆ = 2.8. Here the top and the bottom bands
carry opposite Chern numbers ±1 while the middle band
has a trivial Chern number. The band structure of this
model is shown in Figs. 1(b) and 1(c), where the former is
computed for periodic boundary conditions (on a torus)
and the latter on a cylinder with two open edges. The
edge states appearing in Fig. 1(c) confirm the nontrivial
Chern numbers of the system.

A two-band model on a checkerboard lattice— The
model discussed above has three bands. Here we present
another model with only two bands. A two-band model
has the following advantages: (1) its band structure is
much easier to compute analytically; and (2) the Hilbert
space is much smaller than models with more bands and
thus numerical studies become easier. However, here we
need to allow the next-nearest-neighbor (NNN) and next-
next-nearest-neighbor (NNNN) hoppings. We emphasize
that single-band models can only have trivial Chern num-
bers and thus, a two-band model is the minimal model
to have topologically nontrivial bands.

Consider a checkerboard lattice with NN (t), NNN (t′
1
,

t′2), and NNNN (t′′) hoppings [Fig. 2(a)]. Here, we allow
the NN hopping to carry nonzero complex phase (±φ),
whose signs are shown by the arrows in Fig. 2(a). These

(a) (b)

(c)

FIG. 1: (Color online) Chiral quasi-flat band in the three-
band model on a square lattice. Figure (a) shows the lattice
structure, where each lattice site contains three orbitals and
the arrows represent the breaking of the time-reversal sym-
metry. By putting the system on a torus and a cylinder, the
single-particle energy spectra are shown in Figs. (b) and (c).
In Fig. (c), chiral edges states (thick lines) are observed.

complex hoppings break the time-reversal symmetry at
φ 6= nπ (n ∈ Z). The Hamiltonian of this model is

H = − t
∑

〈i,j〉

eiφij (c†i cj + h.c.) −
∑

〈〈i,j〉〉

t′ij(c
†
i cj + h.c.)

− t′′
∑

〈〈〈i,j〉〉〉

(c†i cj + h.c.) (1)

where ci (c†i ) is the fermion annihilation (creation) oper-
ator at site i. The NN, NNN and NNNN sites are rep-
resented by 〈i, j〉, 〈〈i, j〉〉 and 〈〈〈i, j〉〉〉. The phase factor
in the NN hopping terms is φij = ±φ with the sign de-
termined by the direction of the arrows. The hopping
strength between NNN sites t′ij takes the value of t′

1
(t′

2
)

if the two sites are connected by a solid (dashed) line.
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FIG. 2: (Color online) Chiral quasi-flat band on the checker-
board lattice. The lattice structure is shown in Fig.(a), with
arrows and (solid and dashed) lines representing the NN and
NNN hoppings respectively. The direction of the arrow shows
the sign of the phase in the NN hopping terms. Two of the
NNNN hoppings are shown as the dashed curve. Other con-
vention are the same as in Fig. 1.

The checkerboard lattice has two sublattices, and thus
the Hamiltonian can be written in the momentum space
as H =

∑

~k
ψ†

~k
Hψ~k

, where ψ~k
= (a~k

, b~k) is a two compo-
nent spinor and H is a 2 × 2 matrix

H = [(t′
1

+ t′
2
)(cos kx + cos ky) + 4t′′ cos kx cos ky ]I

+ 4t cosφ(cos
kx

2
cos

ky

2
)σx + 4it sinφ(cos

kx

2
cos

ky

2
)σy

+ (t′
1
− t′

2
)(cos kx − cos ky)σz . (2)

Here I and σx,y,z are the identity and Pauli matrices.
At φ = 0 or nπ, the time-reversal symmetry is pre-

served and the two energy bands in this model cross at
the corner of the BZ [20]. At φ 6= nπ, a gap opens up
between these two bands. Due to the breaking of the
time-reversal symmetry, each band can carry a nonzero
Chern number. In order to reach a flat band, we re-
quire the energies of the top band are equal at at the
Γ point, M point, K point and at ~k = (±π/2,±π/2).
With t = 1 and φ = π/4, this condition implies t = 1,
t′1 = −t′2 = 1/(2 +

√
2), t′′ = 1/(2 + 2

√
2). With these

values, the top band becomes very flat, with bandwidth
of about 1/30 of the gap [Fig. 2(b)] and each of the two
bands now carries Chern number ±1. We further verify
this conclusion via the study of the chiral edge mode [Fig.
2(c)].

Discussion— In addition to the models discussed
above, similar effects can be observed in other models
with quadratic touching. For example, if we allow NN

and NNN hoppings, both the kagome lattice and the hon-
eycomb lattice with the px and py orbtials [8, 22, 23] can
support this type of nearly-flat bands when the time-
reversal symmetry is broken. Here the kagome-lattice
model is a three-band one, while the other has four bands.

Here, we compare the models with quadratic band
touching and those with Dirac points. Due to these
fermion doubling, the Dirac points need to appear in
pairs. In order to reach an insulating phase starting
from a semi-metal with two Dirac points, a nonzero mass
need to be introduced at each of the two Dirac points.
However, depending on the relative sign of the two Dirac
masses, the resulting insulator can be either topologi-
cally trivial or nontrivial [11]. Due to this uncertainty
on the topological structure, the nearly-flat band from
a model with Dirac points may be topologically trivial
and thus irrelevant to our interests. On the contrary,
for the models with quadratic band touching, the con-
straint of fermion doubling is absent and there is a single
crossing point. This crossing point can be regarded as
two Dirac points merging together, and is protected by
time reversal symmetry and discrete rotational symme-
try, e.g., C4 in the checkerboard lattice model. Since two
hidden Dirac cones have the same chirality [20], the en-
ergy bands will have nontrivial topological numbers once
the gap is opened by breaking time reversal symmetry by
complex hoppings which do not break discrete rotational
symmetry [24]. Therefore, we can focus on the flatness of
the band, without worrying about finding a topologically-
trivial band. This discussion is also the reason that we
considered the d-orbital in the three-band square lattice
model. Without the d-orbital, the two p-band have two
quadratic band crossings at the center and the corner
of the BZ, instead of just one. Therefore, the resulting
insulator may be topologically trivial.

Although the band gap is much lager than bandwidth
in these models, it is not clear whether such nearly-flat
bands are equivalent to Landau levels in 2DEG. How-
ever, the Berry curvature (Fig. 3) in momentum space
shows no sharp features and the only length scale is the
lattice constant, in sharp contrast to the cases in which
the Berry curvature has delta-function like peaks, e.g.
Ref. [25] . Thus, we argue that the topological nearly-flat
bands we propose are very similar to 2D Landau levels
and we expect FQHE at fractional fillings when repul-
sive interactions are turned on. We note in this context
that even 2D Landau levels have a short lattice length,
typically 10-100 times smaller than the magnetic length,
underlying the real physical 2DEG. A more detailed nu-
merical study will be presented in our future work.

When spin degrees of freedom are taken into account,
the discussion above can be generalized to the time-
reversal invariant Z2 topological index by just substi-
tuting the time-reversal symmetry breaking terms into
corresponding spin-orbit couplings (where spin up and
down particles break the time-reversal symmetry in the
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FIG. 3: (Color online) Distributions of the Berry curvature in
momentum space for the flat bands in (a) the square-lattice
model and (b) the checkerboard lattice model.

opposite way and thus the time-reversal symmetry is re-
covered when both spin species are taken into account).
In such a way, it may even be possible to realize fractional

topological insulators [26] in these models.

Experiment realization— In the discussion above, we
only provided the optimum values for the parameters at
which the flatness of the band is maximized. However,
the nearly-flat band does not require strictly fine-tuning
to reach. In fact, even if the parameters are changed by
about 10%, the band remains to be fairly flat in the mod-
els we studied [19]. Because of this stability and the sim-
pleness of these models, we believe that experimental re-
alizations of these models are possible in both condensed
matter systems and ultra-cold atomic gases. The insulat-
ing gap in these systems can be opened via spontaneous
symmetry breaking if a small amount of short-range re-
pulsions are introduced [20, 21, 27]. The same effect can
be expected via explicit symmetry breaking, e.g. by in-
troducing a magnetic field (for charged particles) or an
artificial gauge field (for charge neutral particles) [28],
as well as by rotating the lattice [23]. In recent experi-
ments, some optical lattices have been constructed whose
band structures are described by the square-lattice model
and the honeycomb-lattice model discussed above [29–
32]. Considering the fact that hopping strength can be
tuned relatively easily in cold gases via varying the opti-
cal lattices, these cold-atom systems may be the leading
candidates for the realization of the topological physics
predicted in our work.
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Note added.— After the completion of our work, we
learned that E. Tang et al. [33] recently obtained sim-
ilar topological flat-band in kagome lattices with NNN
hopping and spin-orbit couplings and that T. Neupert et
al. [34] have studied the flat-band limit in the context of
the Haldane model. During the revising of this work, the
existence of fractional quantum Hall effect in our model
is confirmed by exact numerical studies as reported in
Ref. [35].
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