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Transport in an ideal two-dimensional quantum spin Hall device is dominated by the counter-
propagating edge states of electrons with opposite spins, giving the universal value of the conduc-
tance, 2e2/h. We study the effect on the conductance of a magnetic impurity, which can backscatter
an electron from one edge state to the other. In the case of isotropic Kondo exchange we find that
the correction to the electrical conductance caused by such an impurity vanishes in the dc limit,
while the thermal conductance does acquire a finite correction due to the spin-flip backscattering.

PACS numbers: 71.10.Pm, 72.10.Fk

Topological insulators have been actively studied in the
last few years [1]. In these systems the bulk of the sample
is insulating, with gapless electronic excitations allowed
only at the boundary. One example of this phenomenon,
the quantum Hall effect, is realized in two-dimensional
electron systems placed in a strong magnetic field per-
pendicular to the sample. Another example is the so-
called quantum spin Hall (QSH) effect, recently observed
in HgTe quantum wells [2]. It is present in time-reversal
invariant two-dimensional systems, and can be viewed as
two coexisting quantum Hall states for opposite spin sub-
systems. Although no external magnetic field is present,
an effective field is generated via spin-orbit coupling. The
sign of the field is opposite for spin-↑ and spin-↓ electrons,
resulting in two edge states propagating in opposite di-
rections.
In the absence of defects, the conductance measured

between two contacts attached to the edges of a quantum
spin Hall device is 2e2/h. (Here e is the electron charge
and h is the Planck’s constant.) This can be understood,
e.g., as twice the conductance of a standard quantum Hall
structure, as the number of the edge states is doubled.
The presence of two counter-propagating edge states also
allows for the possibility of backscattering of electrons,
which would reduce the conductance. However, such
backscattering processes are strongly restricted by the
time reversal symmetry [3, 4]. In particular, an impurity
without internal degrees of freedom cannot backscatter a
single electron at the edge, though backscattering of two
electrons is allowed. Another allowed process is backscat-
tering of a single electron by a magnetic impurity.
The effect of a magnetic impurity on the conductance

of a QSH device was discussed recently by Maciejko et

al. [5]. They argued that at high temperature T the
backscattering by magnetic impurity gives a small nega-
tive correction to the conductance. As the temperature
is lowered, the Kondo effect enhances the backscattering
and the correction grows. The trend then reverses at T
of the order of the Kondo temperature, and at T = 0 the
quantized conductance 2e2/h is restored. In this paper
we study the correction δG to the conductance as a func-
tion of frequency ω, focusing on case of isotropic Kondo

exchange and neglecting the two-particle backscattering.
Our results for δG(ω) agree with the predictions by Ma-
ciejko et al. [5] when ω exceeds a certain relaxation rate,
whereas in the dc limit ω → 0 we find δG = 0.
Following Refs. [3–5], we combine the two edge states

into a single non-chiral Tomonaga-Luttinger liquid and
write its Hamiltonian in the standard bosonized form [6]

H0 =
~v

2π

∫

dx[K(∂xθ)
2 +K−1(∂xφ)

2]. (1)

Here v is the velocity of the edge states, and parameter
K accounts for the interactions between the electrons at
the edge, with the repulsive interactions corresponding
to K < 1. The bosonic fields θ(x) and φ(x) satisfy the
commutation relations [φ(x), ∂yθ(y)] = iπδ(x − y). For
simplicity, we limit ourselves to the case of spin- 12 im-
purity, and write the Kondo coupling to the edge states
using the standard boson representation of the electron
operators ψ↑,↓ = (2πα)−1/2e−i(θ±φ), where α is the short
distance cutoff and we assigned spins up and down to the
right- and left-moving electrons, respectively. We allow
for the possibility of anisotropic coupling and write the
spin-flip term as

H⊥ =
J⊥
2πα

[e2iφ(0)S+ + e−2iφ(0)S−], (2)

where S± = Sx ± iSy and Si are spin operators. In
addition, the z-component of the impurity spin is coupled
to the Tomonaga-Luttinger liquid via

Hz = −Jz
π
∂xθ(0)S

z. (3)

For convenience, our Hamiltonian allows for uniaxial ex-
change anisotropy, which disappears at Jz = J⊥. Up to
a minor difference in notations the Hamiltonian (1)–(3)
coincides with the expression used in Refs. [3, 5].
To discuss the conductance of the device, one has to

add to the Hamiltonian a term accounting for the applied
bias. The most straightforward approach is to assign
different chemical potentials ±eV/2 to the right- and left-
moving electrons. Such a perturbation takes the form

HV = −eV
2π

∫

dx ∂xθ. (4)
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One should note that assigning the same chemical poten-
tial to all the electrons moving in the same direction is
an approximation. It assumes that the backscattering by
impurity is weak, δG≪ e2/h, and that ω ≪ v/L, where
L is the distance between the source and drain contacts.
The operator (4) commutes with H0 and Hz, and its

only effect is to change the energy by ±eV each time an
electron is backscattered and the impurity spin is flipped
by H⊥. The same effect is achieved by assigning dif-
ferent energy values to the up and down components of
the impurity spin, i.e., by replacing (4) with an effective
magnetic field term

HV = −eV Sz. (5)

This replacement can be more formally justified by notic-
ing that the difference of the operators (4) and (5) com-
mutes with the Hamiltonian.
To simplify the subsequent calculations it is convenient

to rescale the bosonic fields {φ, θ} → {
√
Kφ, θ/

√
K} and

then perform the unitary transformation U = eiλφ(0)S
z

.
For λ = Jz/π~v

√
K the additional term arising from the

transformation of H0 cancels the coupling (3) of the z-
components of spins, resulting in the Hamiltonian

H̃0 =
~v

2π

∫

dx[(∂xθ)
2 + (∂xφ)

2], (6)

H̃⊥ =
J⊥
2πα

[ei2
√

K̃φ(0)S+ + e−i2
√

K̃φ(0)S−], (7)

with the bias contribution (5) retaining its form. The
advantage of this procedure is that the effect of electron-
electron interactions and coupling of z-components of
spins are now accounted for by a single parameter K̃ =
K(1− Jz/2π~vK)2.
Our first goal is to evaluate the correction δG(ω) to

the conductance of the system due to the backscatter-
ing of electrons by the impurity. Since backscattering
of a right-moving electron is always accompanied by the
impurity spin flip from ↓ to ↑, the correction to the cur-
rent can be computed as the time derivative of Sz, i.e.,
δI = −e∂tSz. With the Hamiltonian in the form (5)–(7)
one immediately obtains

δI =
ie

~

J⊥
2πα

[ei2
√

K̃φ(0)S+ − e−i2
√

K̃φ(0)S−]. (8)

In the linear response theory the conductance can be
found using the Kubo formula, which expresses δG(ω)
in terms of the current-current correlator. The latter
cannot be found exactly for arbitrary value of the pa-
rameters K̃ and J⊥. Assuming weak coupling (7), one
can evaluate δG to lowest order in J⊥, which results in
the following expression

δG(ω) = −2e2

~3

(

J⊥
2πα

)2 (
πT

D

)2K̃

sin(πK̃)

× 1

iω

∫ ∞

0

(eiωt − 1)dt

[sinh(πT t/~)]2K̃
. (9)

Here we have introduced the bandwidth D = ~v/α.
In the most interesting regime of low frequencies, ~ω ≪

T , the conductance is

δG = −e
2γ0
2T

, (10)

where γ0, defined as

γ0 = J2
⊥Υ, Υ =

[Γ(K̃)]2

(2π~)2αvΓ(2K̃)

(

2πT

D

)2K̃−1

, (11)

has the meaning of the rate of spin-flip processes at V =
0. The same result was obtained by a similar method
by Maciejko et al. [5]. It is important to realize that the
derivation relied on the perturbation theory in J⊥. Let
us now show that at low frequencies ω ≪ γ0 ∝ J2

⊥ the
conductance deviates from (10).
To this end we consider the dynamics of the impurity

spin at finite temperature and weak spin-flip coupling,
γ0 ≪ T/~. In this case, the spin remains in the ↑ or ↓
state for a long time. The rates of spin-flip events are
easily computed and take the form

γ± = γ0

(

1± eV

2T

)

(12)

for small voltage eV ≪ T , where γ+ and γ− are the rates
of up-flip and down-flip, respectively.
At any given moment the impurity spin can be in ei-

ther ↑ or ↓ state, and its behavior is described by the
probabilities P↑ and P↓. Their time dependence can be
found from a simple rate equation

∂tP↑ = γ+P↓ − γ−P↑ (13)

and the condition P↑+P↓ = 1. Each spin flip is accompa-
nied by backscattering of a single electron. The resulting
correction to the electric current is δI = −e∂tP↑. To
find the linear conductance one substitutes the rates in
the form (12) with V = V0e

−iωt into (13), and calculates
δG = δI/(V0e

−iωt). This procedure yields

δG(ω) = −e
2γ0
2T

ω

ω + 2iγ0
. (14)

The rate equation approach is applicable only at rela-
tively low frequencies, ~ω ≪ T . In a broad frequency
range γ0 ≪ ω ≪ T/~ expression (14) recovers the per-
turbative result (10).
The results (10) and (14) differ dramatically in the dc

limit, ω → 0, where the correction (14) vanishes. This is
easily understood if one notices that every time an elec-
tron is backscattered to the left (right) the impurity spin
is flipped up (down). Thus, the backscattering current
changes its direction with every spin flip, and in the dc
limit the correction to the conductance vanishes. This ar-
gument also applies at T . ~γ0, when the rate equation
approach is no longer applicable.
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FIG. 1: (Color online) Real part and imaginary part of δG(ω)
for several temperatures T/Γ.

To illustrate this point, we consider a special case K̃ =
1
2 , in which the dimension of the operator exp[i2

√

K̃φ(0)]
in the definition of the spin-flip operator (7) is 1

2 , [5].
This case corresponds to the well-understood Toulouse
limit of the Kondo model, in which the Hamiltonian can
be reduced to that of a system of non-interacting chiral
spinless fermions Ψ(x) coupled to a discrete level:

H = −i~v
∫

Ψ†(x)∂xΨ(x)dx − eV d†d

+
J⊥√
2πα

[d†Ψ(0) + Ψ†(0)d]. (15)

Here d is the annihilation operator of a fermion at the
discrete level which models the impurity spin, Sz = d†d−
1
2 . The model (15) is easily solved exactly, resulting in

δG(ω) = −i
∫∫

ω[n(ξ2)− n(ξ1)]

~ω − ξ1 + ξ2 + iδ

(eΓ/π)2dξ1dξ2
(ξ21 + Γ2)(ξ22 + Γ2)

.

(16)
Here the level width Γ = J2

⊥/4π~αv coincides with ~γ0
for K̃ = 1/2, Eq. (11), and n(ξ) = 1/(eξ/T + 1) is the
occupation probability of a fermion state with energy ξ
measured from the Fermi level.
In the high-temperature limit T ≫ Γ one can expand

the difference of the Fermi functions in the numerator
to linear order in ξ2 − ξ1. This approximation recovers
our earlier result (14) with γ0 = Γ/~. Importantly, the
Toulouse limit expression (16) for δG(ω) does not rely
on the rate equation approach and is therefore valid for
any temperature. It is easy to see that in the dc limit
the expression (16) vanishes for any T . The dependence
δG(ω) at various temperatures is shown in Fig. 1.
In the absence of corrections to the quantized dc

conductance of the system, it is interesting to explore
whether other transport properties are affected by cou-
pling to the impurity. One such property is the ther-
mal conductance K. Let us assume that the left- and
right-moving electrons originate in the leads with differ-
ent temperatures, T and T +∆T , respectively. Spin-flip
scattering by the impurity gives rise to two kinds of elec-
tron scattering processes. The electrons are either scat-
tered from the warmer right-moving system to a colder

left-moving one, or in the opposite direction. These two
types of processes change the charge of the right-moving
system by e and −e, respectively, resulting in no correc-
tion to the time-averaged electric current. On the other
hand, each scattering process transfers heat in the same
direction: from the warm right-moving system to the cold
left-moving one. As a result, one expects to find a finite
negative correction δK to the thermal conductance of the
system.
To evaluate δK, we identify the operator of the differ-

ence of energies in the right- and left-moving branches
δH̃ = (H̃R

0 − H̃L
0 )/2. The energy densities of the two

subsystems are given by ~v[∂x(φ∓ θ)]2/4π, leading to

δH̃ = −~v

2π

∫

∂xφ∂xθdx. (17)

The operator δJE of the energy current transferred be-
tween the right- and left-moving branches is then found
as the time derivative of (17), resulting in

δJE = −~v
√

K̃

e
∂xφ(0) δI, (18)

where δI is the electric current operator in Eq. (8).
It is worth noting that the operators ∂xφ(0) and δI act

in separate subspaces of odd and even φ(x). In particular,
the dynamics of ∂xφ(0) is not affected by the coupling
(7) to the impurity. A similar observation was made by
Kane and Fisher [7] in the study of thermal transport of a
Luttinger liquid through a tunneling barrier. They used
the factorization of the energy current operator similar
to Eq. (18) to obtain a relation between the thermal and
electrical conductances of the system. Repeating their
procedure for our Hamiltonian, we obtain the expression

δK =
~
3K̃

8e2T 2

∫ ∞

−∞

ω2Re δG(ω)

sinh2(~ω/2T )
dω, (19)

fully analogous to Eq. (19) of Ref. [7].
The relation (19) shows that thermal conductance is

determined by the electrical conductance at frequencies
ω ∼ T/~. As a result, the fact that δG vanishes at ω → 0
does not mean that there will be no correction to K. For
instance, in the lowest order in spin-flip scattering (7),
one can find δK by substituting into Eq. (19) δG(ω) in
the form (9). This procedure yields

δK = −π
2

2

K̃2

2K̃ + 1
γ0. (20)

Within the applicability of the perturbation theory,
~γ0 ≪ T , this correction is small compared to the nomi-
nal value K0 = π2T/3h of the thermal conductance of a
Kramers’ pair of edge states.
At ~γ0 ∼ T the perturbative approach is not appli-

cable, but an exact solution is possible in the Toulouse
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FIG. 2: Non-monotonic temperature dependence of the ther-
mal conductance K = K0+δK in the Toulouse limit, Eq. (21).

limit, K̃ = 1/2. Substituting the conductance (16) into
Eq. (19) we obtain

δK =
Γ2

8hT 2

∫∫

(ξ2 − ξ1)
3[n(ξ2)− n(ξ1)]dξ1dξ2

(ξ21 + Γ2)(ξ22 + Γ2) sinh2[(ξ2 − ξ1)/2T ]
.

(21)
At high temperatures (T ≫ Γ), δK = −π2Γ/16~, in
agreement with the perturbative result (20). On the
other hand, the fact that Re δG(ω) ∝ ω2 at ω → 0 means
that the correction δK in Eq. (19) is suppressed as T 3 at
low temperatures, T ≪ Γ. Indeed, from Eq. (21) one
finds δK = −2π3T 3/15~Γ2 in this regime.
The suppression of δK in both the low- and high-

temperature limits results in non-monotonic behavior of
the normalized thermal conductance K/K0 as a function
of temperature, Fig. 2. Such non-monotonic behavior
was predicted for the electrical conductance by Maciejko
et al. [5], based on the well-known non-monotonic tem-
perature dependence of the spin-flip scattering in the
Kondo problem. Although our theory predicts quan-
tized dc conductance 2e2/h at any temperature, the non-
monotonic temperature dependence is recovered for ther-
mal transport.
At T . γ0 and ω ∼ γ0 our correction to the electrical

conductance can take rather large values |δG(ω)| ∼ e2/h,
see, e.g., Fig. 1. We do not believe the correction δG(ω)
has a clear physical meaning in this regime, as the condi-
tions for the applicability of the model (4) are violated.
This caveat, however, does not apply to our main con-
clusion, namely vanishing δG at ω → 0. Similarly, the
behavior of the thermal conductance shown in Fig. 2 is
only qualitatively correct at T ∼ Γ, where the relative
correction δK/K0 is of order unity.
The main feature of our work, the absence of correc-

tion to the dc conductance due to Kondo scattering, is
caused by the symmetry of the Hamiltonian (1)–(3) that
preserves the z-component of the total spin of the sys-
tem. Our model is justified if the magnetic impurity is
approximated as a single-orbital Anderson impurity, in
which case the Kondo exchange is isotropic, Jσ ·S, even

in the presence of spin-orbit coupling [8]. Anisotropic
corrections may appear in the case of multiple orbitals [9].
Exchange anisotropy can break the conservation of the z-
component of the total spin and result in non-vanishing
correction to the dc conductance. In the simplest model
of anisotropic exchange Jiσ

iSi with Jx 6= Jy the correc-
tion to the dc conductance above the Kondo temperature
is easily found from the rate equation approach,

δG = −e
2Υ

4T

(J2
x − J2

y )
2

J2
x + J2

y

, (22)

with Υ defined by Eq. (11). At T below the Kondo tem-
perature the impurity spin is screened, and the effect of
exchange anisotropy is reduced to that of an impurity-
induced two-electron backscattering. Effect of these pro-
cesses on conductance were studied in Ref. [5] and found
to be suppressed at T → 0 as T 2(4K−1).

Another limitation of our model is the assumption that
all electrons moving in the same direction have the same
spin. Kramers degeneracy guarantees that electrons with
momenta ±p have opposite spins, and we defined the z-
axis as the direction of the spin of the right-mover at the
Fermi level, which is determined by the specific form of
spin-orbit coupling. Transport is controlled by electrons
with momenta |p± pF | ∼ T/v, whose spins may deviate
slightly from the z-direction defined at p = pF . This de-
viation may result in a correction to the dc conductance
vanishing at low temperatures as a power of T/D.
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