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Monte Carlo simulations of (fluctuating) interfaces in Ising models confined between competing
walls at temperatures above the wetting transition are presented and various correlation functions
probing the interfacial fluctuation are computed. Evidence for the non-local interface Hamiltonian
approach of A. O. Parry et al. [Phys. Rev. Lett. 93 (2004) 086104] is given. In particular, we show
that two correlation lengths exist with different dependence on the distance D between the walls.
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Interfaces between coexisting fluid phases interacting
with solid walls occur in many different contexts: wet-
ting phenomena [1–4], heterogeneous nucleation [5–7],
nanofluidic devices [8], capillary imbibition [9], use of
mesoporous materials for separation [10], capillary con-
densation [11–13] and related phenomena where liquid
bridges [10, 13–15] matter for nanoconfinement, etc. Due
to the inhomogeneous character of the fluid in such cir-
cumstances, a precise theoretical understanding of all
these phenomena is difficult to achieve. Certain prob-
lems (e.g. “critical wetting” [16–25]) have been heavily
debated for a long time. An atomistic, detailed descrip-
tion (based on Hamiltonians via density functional theory
[26]) involves mean-field-type approximations that often
are inadequate in view of the reduced dimensionality of
these problems. Thus, coarse-grained models of the in-
terfaces are required in order to allow a description of
interfacial fluctuations. The “standard model” of inter-
faces has been the (local) interface Hamiltonian describ-
ing the interaction between a (fluctuating) interface at
position z = `(x, y) above a planar wall at cartesian co-
ordinate z = 0 in terms of a local potential V (`(x, y))
[1–4, 27]. This theoretical approach yielded predictions
for critical wetting that were contradicted by the results
of both simulation and experiment. However, Parry et
al. [22–24, 28] pointed out various intrinsic inconsisten-
cies of this description and suggested use of a non-local
functional W{`(x, y)}. This implies that the interface
at the point z = `(x, y) does not just “feel” a potential
from the wall at the point ~r = (x, y, z = 0) underneath,
but every point at the interface z = `(x, y) interacts with
every point ~r′ of the wall. Note that this description
naturally generalizes to the interaction of interfaces with
non-planar walls as well [23, 28].

Despite the possible wide-reaching consequences of this
suggestion for the description of interfacial phenomena,
the evidence in favor of this new theory so far is scarce.
Basically, the slow crossover from mean-field to non-
classical critical behavior seen in Monte Carlo studies of

critical wetting [19] is all the (indirect) evidence that ex-
ists (this slow crossover is compatible with the non-local
theory [23–25]). However, more direct evidence so far has
been lacking.

Indeed, while critical wetting (for systems with short
range surface forces) is a somewhat special problem and
is difficult to realize in nature [29], a much more common
situation is complete wetting [1–4] (Fig. 1): at temper-
atures where the liquid (at liquid-vapor equilibrium) is
above its wetting transition temperature, the interface
is (for conditions where the vapor is slightly off vapor-
liquid coexistence) at a finite distance ¯̀ from the wall.
Now, the theory of Parry et al. [25] also predicts im-
portant consequences of non-locality for this case. We
first define the site-site correlation function C(z1, z2, r)
as the correlation between sites at height z1 and z2
and separated by a lateral distance r. Consider the
fourier transformed correlation function G(z1, z2, q) ≡∫
drx

∫
dry exp(iqxrx+qyry)C(z1, z2, r) where (rx, ry) are

x and y coordinates of the distance ~r in Fig. 1)}. Parry
et al. [25] predict that only the correlation function
G(¯̀, ¯̀, q) which has small q behavior

G(¯̀, ¯̀, q) ∝ (1 + q2ξ2‖)
−1, (1)

is the same as for the local theory. In Eq. (1) ξ‖ is the
correlation length of interfacial fluctuation in x, y direc-
tions. However, two other correlation functions C(0, ¯̀, r)
and C(0, 0, r), or their Fourier transforms G(0, ¯̀, q) and
G(0, 0, q), acquire a more complicated, non-trivial struc-
ture [25],

G(0, ¯̀, q) ∝ exp(−q2ξ2NL/2)/(1 + q2ξ2‖) , (2)

G(0, 0, q) ∝ exp(−q2ξ2NL)/(1 + q2ξ2‖) , (3)

where a second correlation length ξNL appears. This new
correlation length, ξNL, is completely absent, in the
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FIG. 1: Coarse-grained picture of an interface at height
z = `(x, y) above a planar wall at z = 0. For a situation
close to complete wetting, the average height ¯̀ is much larger
than all molecular dimensions, and hence the interface is sim-
ply described by the single-valued function `(x, y) separating
liquid from vapor, disregarding the “intrinsic” structure of
the interface. The thick lines indicate three correlation func-
tions C(z1, z2, r), r being the lateral distance: C(¯̀, ¯̀, d) [line
connecting two dots]; C(0, 0, r) [line connecting two squares];
and C(0, ¯̀, r) [line connecting square and dot, respectively).
(Note: ~r = (rx, ry) is a vector having x and y components.)

framework of the theory based on the standard interface
Hamiltonian. We note, however, that on a qualitative
level Eqs. (1)-(3) also have been derived from the stan-
dard mean-field square gradient theory using the double-
parabola approximation[25]. This length ξNL, can be
written as ξNL = (¯̀/κ)1/2, where κ−1 describes the (ex-
ponential) decay of the (short range) wall potential V (`),
V (`) ∝ exp(−κ`), in the “standard model” of the wall-
interface interaction [25]. In the present Letter we, hence,
wish to fill this gap, providing evidence for the non-local
theory of Parry et al. [23–25, 28] by testing the predic-
tions given in Eqs. 2, 3 and obtaining ξNL. However, for
a computer simulation a slight modification of the setup
sketched in Fig. 1 is more convenient: rather than con-
fining the interface at a finite distance ¯̀ from a wall by
working slightly off coexistence in a semi-infinite geom-
etry, we consider a thin film of thickness D confined by
strictly antisymmetric walls and exactly at coexistence
[30, 31]. Then, ¯̀ = D/2 and ξ‖ ∝ exp(κD/4) [32] while

then ξNL = (D/2κ)1/2. Varying D we then obtain very
direct evidence for both lengths ξ‖, ξNL and their very
different dependence on film thickness.

Following previous studies of thin Ising films with com-
peting walls [31], we simulate L×L×D simple cubic Ising
lattices, choosing surface fields H1/J = −HD/J = −0.55
and an inverse temperature J/kBT = 0.244; since it is
known that for this choice of surface fields critical wet-
ting [19] occurs at J/kBTw = 0.250 (±0.001), this choice
corresponds to complete wetting, and κ−1 is still small
(κ−1 ≈ 2 [32], measuring all lengths in units of the lattice
spacing). We choose systems with D = 6, 8, 10, 12 and 14

FIG. 2: Correlation functions C(D/2, D/2, r) {open squares}.
C(1, D/2, r) {triangles} and C(1, 1, r) {diamonds} plotted vs.
distance r, for a system with D = 12,and L = 128, 256, and
512. (Data for L = 128 curve downwards at large r, but for
L = 512 pure exponential behavior is seen for large r. Surface
fields H1/J = −HD/J = 0.55 and J/kBT = 0.244. Note that
due to the discreteness of the lattice the surface fields act on
layers n = 1 and n = D, respectively, and the interface plane
occurs in between n = D/2 and n = D/2 − 1 (for even D).
Where not shown, error bars are smaller than the symbols.

layers, and the lateral linear dimension L = 256 (choos-
ing periodic boundary conditions throughout). Multiple
runs are made with different starting configurations and
different random number seeds to determine statistical
errors and to detect any systematic errors. Typically, a
toatal of around 108 MCS/site were kept for computing
averages of the correlation functions. To check for finite
size effects, for D = 12 the choices L = 128 and 512 were
also considered.

Fig. 2 shows typical data for the correlation functions
C(D/2, D/2, r), C(1, D/2, r) and C(1, 1, r) at an inverse
temperature of J/kBT = 0.244. Since the two sur-
faces are equivalent, the squares are obtained as averages
[C(D/2, D/2, r)+C(D/2+1, D/2+1, r)]/2, the diamonds
are averages [C(1, 1, r)+C(D,D, r)]/2, and the triangles
averages [C(1, D/2, r)+C(D,D/2+1, r)]/2. As expected,
the correlations of spins within the interface are largest,
but the asymptotic decay of all three correlations is gov-
erned by the exponential decay exp(−r/ξ‖). However,
since the initial decay clearly is non-exponential, and the
behavior for large r is affected both by finite size effects
and statistical errors, a quantitative analysis of these cor-
relations in real space is difficult.

Fortunately, the behavior of the Fourier transforms
G(D/2, D/2, q) and G(1, D/2, q) yields a clearer picture
(Fig. 3). Finite size effects are still seen for q ≤ 0.05,
but they are negligible for larger q. When we exam-
ine the ratio G(1, D/2, q)/G(D/2, D/2, q), we no longer
find any systematic differences due to the finite size of L.
Eqs. 1 and 2 imply that this ratio should simply be pro-
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portional to exp(−q2ξ2NL/2). Our results are compatible
with this prediction (Fig. 3b), and the fact that finite size
effects are no longer present supports the plausible con-
clusion that only the very large correlation length ξ‖(D)
is affected by finite size but not the much smaller length
ξNL(D). Fig. 4 shows that ,ξNL(D) indeed increases with
D according to a power law, although the theoretical ex-
ponent (ξ2NL ∝ D) is not verified. Note, however, that
the asymptotic region κD � 1 unfortunately has not yet
been reached. Nevertheless, we consider Fig. 3 and Fig.4
as offering fairly strong evidence in favor of the non-local
theory of Parry et al. [23–25]. Recall that according to
Parry et al. [24, 25, 28] ξNL directly controls the range
of the effective repulsion generated by the nonlocal inter-
action between the surface and the interface: this range
diverges when ¯̀ in Fig.1, or D in our geometry, tends to
infinity, while the range 1/κ of the local interaction stays
finite. The presence of this nonlocal repulsive interac-
tion cuts off long range interfacial fluctuations, and thus
affects the observability of non-universal critical wetting
with short range forces. In addition, the presence of this
length strongly alters the description of interactions be-
tween two curved interfaces, and hence should lead to
interesting (but as yet, to our knowledge, unexplored)
consequences for interface unbinding from rough surfaces:
we speculate that roughness will be averaged out if the
scale of corrugation is smaller than ξNL but needs to be
accounted for explicitly otherwise.

In conclusion, using large scale Monte Carlo simula-
tions of the Ising model in a thin film geometry with
competing surface fields, we have been able to measure
several correlation functions describing interfacial fluc-
tuations with sufficient accuracy to put the nonlocal
interface Hamiltonian description of Parry et al. [23–
25, 28] to a test. We have obtained evidence that two
correlation lengths, ξ‖(D) and ξNL(D), do indeed con-
trol the behavior of the correlation function. While
ξ‖(D) ∝ exp(κD/4) is predicted already by the naive
interface Hamiltonian description [30, 32], and this re-
sult has also been verified by earlier simulations [34], the
present work yields the first evidence for the role of the
second correlation length, ξNL(D). However, taking into
account that κ/2 ≈ 0.25 [32] the actual values observed
for ξNL(D) {Fig. 4} differ from the theoretical prediction,
ξ2NL(D) = D/2κ = D. More work will be needed to clar-
ify this remaining problem, and to extend our study to
other systems and related problems. Indeed, experimen-
tal evidence for a length ξ⊥ proportional to

√
¯̀ or

√
D

has been seen both in thin films of polymer blends [35]
and in wetting layers of phase separated colloid-polymer
mixtures [36]: this length ξ⊥ is a measure of transverse

interfacial fluctuations, however, and ξ⊥ ∝
√

¯̀∝
√
D al-

ready is derived from the standard interface Hamiltonian
model, for short range wall forces. Thus these systems
would also be well suited to test Eqs. 2 and 3 experi-
mentally. We hope that our study will encourage such

(a)

(b)

FIG. 3: (a) Correlation functions G(D/2, D/2, q) [upper set
of curves] and G(1, D/2, q) [lower set of curves] plotted vs. q,
for D = 12, H1/J = −HD/J = −0.55, J/kBT = 0.244 and
three choices of L, as indicated. The inset shows an ampli-
fication of the region for small values of q. The circles and
squares represent results of L = 128, the triangles (both up
and down) represent L = 256, while the stars and diamonds
represent L = 512. (b) Ratio G(1, D/2, q)/G(D/2, D/2, q)
plotted vs. q2, using the data of Fig. 3(a). Where not
shown, error bars are smaller than the symbols. Broken curve
in part (b) shows the full theory[33], namely the function

exp{ξ2NLκ[κ−
√
q2 + κ2]} which reduces to the asymptotic be-

havior exp(−q2ξ2NL/2) for small q, also shown as dash-dotted
curve.

work.
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Naturwissenschaften (SFRN) during his visit in Mainz.
We are indebted to A. O. Parry for helpful discussions
and information of Ref. 25 prior to publication. Calcula-
tions were performed at the Research Computer Center
of the University of Georgia.



4

FIG. 4: Plot of ξ2NL/2 versus D, using data such as shown in
Fig. 3b, for D = 6, 8, 10, 12 and 14. The data can be fitted
to ξNL ∝ Dx with x close to unity, but for the small values
of D accessible here this exponent x clearly is an effective
exponent.
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