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Quantum Quench of an Atomic Mott Insulator
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We study quenches across the Bose-Hubbard Mott-insulator-to-superfluid quantum phase transi-
tion using an ultra-cold atomic gas trapped in an optical lattice. Quenching from the Mott insulator
to superfluid phase is accomplished by continuously tuning the ratio of Hubbard tunneling to interac-
tion energy. Excitations of the condensate formed after the quench are measured using time-of-flight
imaging. We observe that the degree of excitation is proportional to the fraction of atoms that cross
the phase boundary, and that the quantity of excitations and energy produced during the quench
have a power-law dependence on the quench rate. These phenomena suggest an excitation process
analogous to the Kibble-Zurek mechanism for defect generation in non-equilibrium classical phase
transitions.
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The study of non-equilibrium phase transitions is wide
ranging, touching on topics as diverse as the formation
of structures in the early universe [1] and the practical-
ity of adiabatic quantum computing [2]. The so-called
“Kibble-Zurek” (KZ) mechanism has been used to un-
derstand some universal features—principally the rate of
topological defect formation—of quenches across classical
phase transitions [1, 3]. “Quench” in this context refers
to rapidly varying a thermodynamic parameter in order
to drive the system across the critical point of a phase
transition and out of equilibrium for a finite time. The
KZ theory has recently been extended to quantum phase
transitions [4–12]. In contrast to the classical case, quan-
tum phase transitions involve closed quantum mechani-
cal evolution at zero temperature, for which quenches
are accomplished by varying a parameter in the Hamilto-
nian in order to tune between different quantum phases.
While the KZ mechanism has successfully been tested
for classical transitions (e.g., on liquid crystals [13]), and
spontaneous vortex formation has been observed during
cooling an atomic gas through the Bose-Einstein conden-
sation transition [14], experimental examination of quan-
tum quenches in the context of the KZ mechanism has
been scant. Notably, there is evidence that the forma-
tion of ferromagnetic domains in a spin-1 Bose-Einstein
condensate can be attributed to a quantum quench [15].
In this work, we probe quantum quenches for a paradigm
of quantum phase transitions—the Bose-Hubbard (BH)
model—using atoms confined in an optical lattice. In
contrast to previous experiments [16], we quench from
the Mott-insulator (MI) to the superfluid (SF) state, and
we systematically investigate the formation of excitations
as the quench amplitude and rate are varied.

In our experiment, a cubic optical lattice formed from
three intersecting pairs of 812 nm laser beams is super-
imposed on a parabolically confined 87Rb Bose-Einstein
condensate; details of our apparatus can be found in Ref.
[17] and references therein. The atoms in the lattice are
described by the inhomogeneous BH model with Hub-
bard tunneling energy t and interaction energy U , the

ratio of which is controlled by tuning the lattice laser
intensity to adjust the lattice potential depth s. By
changing s, MI and SF phases can be sampled inhomo-
geneously in the gas [18]: for s & 13ER, nested Mott-
insulator and superfluid layers exist in the lattice, and for
s . 13ER the gas is purely superfluid, as shown in Fig. 1
(ER = h/8md2, where m is the atomic mass, d = 406 nm
is the lattice spacing, and h is Planck’s constant).

Quenching across the SF–MI phase transition is ac-
complished by adjusting s dynamically in such a way
to transform the gas between equilibrium configurations
with and without atoms in the MI phase present (Fig. 1).
While quenches are possible on all relevant timescales,
in this paper we explore quenches that occur at rates
1/τQ = d(t/U)/dτ (τ is time) that are too slow to ex-
cite atoms into higher vibrational states in the lattice
potential. How 1/τQ compares with U/h and t/h is com-
plicated because the phase boundary is crossed at a range
of densities and t/U in the trap, and therefore the Hub-
bard energies Uc and tc at the phase transition change
during the quench. Despite this, the quenching rate is al-
ways slow compared with Uc: 1/τQ varies from 1×10−3–
0.2 Uc/h. The quench rate is not consistently fast or slow
compared with tc [19] or the confining trap frequencies,
the geometric mean of which varies (because of confine-
ment from the lattice beams) from 43± 2 Hz at s = 0ER

to 82± 6 Hz at s = 25ER. The trap aspect ratio changes
from 1:1.3:1.8 to 1:1:1.2 across the same range.

The effect of variations in the fraction of atoms cross-
ing the SF–MI phase boundary is investigated by quench-
ing s linearly in 5 ms from a variable initial value s0 to
s = 4ER (corresponding to t/U ≈ 1, i.e., the purely SF
regime), as shown in the inset to Fig 2 [20]. The ratio
t/U changes non-linearly during this quench, and there-
fore 1/τQ (according to our definition) varies during the

quench; in the large s limit, t/U ∝ e−2
√
s [21]. The

fraction of atoms crossing the phase boundary is varied
by adjusting s0. The data shown in Fig. 2 sample a
range such that at high s0 nearly all of the atoms start
in the MI phase (with fillings ranging from 1–3 parti-
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FIG. 1. Quench across MI–SF boundary (a) and excitation
measure (b). (a), As shown by the vertical lines, the trapped
gas samples a range of densities and effective chemical poten-
tials µ̃ (in the LDA) [18]; MI regions in the gas are colored red
and SF blue. Given the overall confining potential in our ex-
periment and atom number ((161±13)×103 , averaged across
all measurements), the maximum µ̃ is roughly fixed at 2U
for the measurements described here, which corresponds to a
central filling of 4 atoms per site at low s and a central MI
with 3 atoms per site at high s. A quench is accomplished
by rapidly reducing s and thereby increasing t/U , as shown
by the arrow. (b), A slice (black line) through a typical im-
age (inset) taken after a quench for s0 = 25ER is displayed.
The image is fit to a smooth profile (red line), which is used
to determine the deviation χ̃2

ij (blue line) at each pixel in a
masked region (gray).

cles per site) and therefore cross the phase boundary;
and at low enough s0 so that all of the atoms are in the
SF phase, and consequently no atoms cross the phase
boundary. The fraction of atoms in the MI phase before
the quench, which is identical to the overall fraction of
atoms traversing the phase boundary, is shown as a red
line in Fig. 2, and is determined according to the mea-
sured atom number and a zero-temperature mean-field
calculation in the LDA [18]. After the quench, the lattice

is turned off in 200 µs. This “bandmapping” step [17]—
which maps quasimomentum in the lattice to free mo-
mentum and suppresses atom diffraction—is necessary to
improve the imaging signal-to-noise ratio given the long
expansion times employed for these measurements.

The amount of excitation produced during the quench
is determined by measuring the deviation from a smooth
profile of time-of-flight images taken after release of the
trapped gas immediately following bandmapping. The
absorption image is taken after a relatively long 50 ms
of free expansion, so that vortices, if present, are visi-
ble [22], and phase gradients related to other topological
or wave-like excitations are converted into large density
fluctuations [23]. We fit the image to a smooth func-
tion f that is a combination of a Thomas-Fermi pro-
file and a Gaussian, and measure the amount of ex-
citation χ̃2 as the deviation from the smooth profile:

χ̃2 =
∑

ij χ̃
2
ij = α

∑

ij
(ODij−fij)

2

fij
/
∑

ij ODij , where i, j

index the pixels in the image within a mask defined by an
imaging signal-to-noise ratio greater than 5, OD is the
measured optical depth, and α is a proportionality con-
stant that is determined using a numerical simulation.
We find that all of the images used in this work are well
described by this fit—a condensate appears present after
the quench under all circumstances, and the condensate
fraction varies from 0.35–0.6 across all of the data. While
it was suggested in Ref. [24] that the condensate fraction
may oscillate after the quench, we find no evidence for
such behavior.

The measure χ̃2 is chosen such that it is related to
the fraction of atoms in excited states for the trapped,
weakly interacting gas present before bandmapping. The
physical meaning of χ̃2 can be understood most straight-
forwardly for a one-dimensional non-interacting gas.
In this case, the density profile after sufficiently long
TOF is the momentum distribution n(q) = |ψ(q)|

2
=

|ψ0(q) + δψ(q)|
2
, where δψ are plane-wave excitations,

ψ0(q) =
√

n0(q) is the ground-state condensate wave-
function, and we work in the momentum representa-
tion. After averaging over random excitation phases,
the number of atoms in excited states is

∫

dq |δψ(q)|
2
=

∫

dq [(n(q)− n0(q)]
2 /2n0(q). Given that

∫

dq n0(q) is
the total number of atoms, χ̃2 is naturally interpreted
as proportional to the number of excited atoms in the
non-interacting limit.

Using a numerical simulation of the 3D time-dependent
Gross-Pitaevskii equation, we determined both that χ̃2

accurately reproduces the fraction of Bogoliubov excita-
tions for a trapped condensate (even though the density
after TOF is not the momentum distribution) and the
constant α. We start the simulation with a condensate
at equilibrium in a parabolic trap (using the experimen-
tal parameters), and imprint Bogoliubov excitations un-
der the LDA for a range of wavevectors corresponding
to 0.8 − 3 µm−1; the Thomas-Fermi radius of the gas is
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approximately 10 µm before release. Images are gener-
ated by time evolving the condensate wavefunction for a
free expansion and then integrating through the imaging
line-of-sight. The measure χ̃2 is determined for a range
of excitation fractions averaged over 10 relative phases.
We determine that χ̃2 is equal to the fraction of excited
atoms for α = 10 under simulated conditions. This
method does not properly account for long-wavelength
(i.e., trap-length-scale) excitations or topological excita-
tions such as vortices, which are evident in the insets to
Figs. 1 and 2.

As shown in Fig. 2, we find that χ̃2 is proportional to
the fraction of atoms crossing the phase boundary. Below
the emergence of the unit filling MI phase at s0 ≈ 13ER,
χ̃2 is constant at χ̃2

0 ≈ 0.06 (determined by averaging
over all images with s0 < 13ER, and indicated by the
dashed line in Fig. 2), a value that is consistent with the
combination of photodetection shot noise and technical
noise present in our imaging system. Above s0 ≈ 13ER,
the degree of excitation grows, until χ̃2 saturates to ap-
proximately 0.17 at high lattice depth, for which more
than 90% of the atoms are in the MI phase.

The behavior evident in Fig. 2 suggests that a Kibble-
Zurek-like mechanism is responsible for generating exci-
tations during the quench. In the KZ picture, the diverg-
ing relaxation time near the phase boundary “freezes in”
fluctuations in the relative phase between atomic wave-
functions at different lattice sites present in the MI [6].
Some time after crossing the phase boundary, dynam-
ics effectively restart, and the fluctuations develop into
superfluid excitations, potentially including sound waves
and topological excitations such as vortices. Given that
only the regions of the lattice that cross the SF–MI phase
boundary will give rise to excitations, the direct relation
between the fraction initially in the MI phase and the
degree of excitation is strong evidence for KZ physics.

In the KZ scenario, the quench rate controls the num-
ber of excitations generated according to a power law
that depends on the critical exponents for the phase tran-
sition. We measured this power law, as shown in Fig.
3, across two orders of magnitude in quench rate. For
this measurement we quench the lattice potential depth
starting from a gas composed nearly entirely of the MI
phase at s0 = 20ER (i.e., t/U = 0.005) according to

s(τ) = 0.25 ln2
(

πas√
2d

τ
τQ

+ e−2
√
s0
)

(as ≈ 5 nm is the

scattering length) so that 1/τQ is approximately con-
stant. Because χ̃2 may misinterpret excitations such as
vortices and to estimate the quench-induced heating, we
also measure the kinetic energy generated by the quench.
The kinetic energy per particle KE is measured from
TOF images according to KE = m

〈

r2
〉

/2τ2tof , with

the second moment of the density distribution
〈

r2
〉

=
3/2 ·

∑

ij ODijr
2
ij/

∑

ij ODij after the TOF τTOF . The
factor of 3/2 arises from assuming the energy is dis-
tributed equally among three directions.
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FIG. 2. Amount of excitation produced by quenching as the
fraction crossing the phase SF–MI boundary is varied. The
top left inset shows the experimental timeline; a magnetic
field gradient is applied to support the atoms against gravity
during TOF. Characteristic TOF images are shown as insets
for s0 =9, 15, and 25 ER, and the error bars in this and
the next figure are the standard deviation for the average
taken over 5 images. There is a 7% systematic uncertainty to
s0, which is calibrated using Kapitza-Dirac diffraction. The
overall uncertainty in the MI fraction (red line) ranges from
30% at s0 = 16ER to 10% at s0 = 20ER; below s0 = 12ER

and above s0 = 22ER the uncertainty in MI fraction is zero.

A fit (solid lines) to the data in Fig. 3 reveals power
laws 1/τrQ for χ̃2 and KE consistent within the fit un-
certainty: r = 0.31 ± 0.03 and 0.32 ± 0.02, respectively.
While there are numerous detailed theoretical predictions
for the number of excitations produced during a quench
across the MI–SF phase transition [4, 6, 8–10], none that
we know of are directly applicable to our experiment.
Generically, the size of domains associated with an exci-

tation formed during the quench should scale as τ
ν/(νz+1)
Q

[25], where z is the dynamical critical exponent and the
correlation length diverges as (t/U − tc/Uc)

−ν near the
phase boundary. In three dimensions, the density of exci-

tations is therefore proportional to 1/τ
3ν/(νz+1)
Q . For our

experiment, nearly all of the atoms cross the “generic”
phase transition and not the multi-critical point at the
the “tip” of the MI “lobes.” In this case ν = 1/2 and
z = 2, and therefore the number of excitations should

scale as 1/τ
3/4
Q , which is inconsistent with our data.

This disagreement may be explained by numerous is-
sues that deserve more theoretical attention. For exam-
ple, the spatially inhomogeneous nature of the gas gives
rise to a phase transition “front” that moves through the
gas; this has been examined in context of certain classi-
cal and quantum phase transitions [5, 26]. Depending on
the nature of the excitations, nex may scale differently
with τQ—e.g., if the excitations are only vortices, then
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FIG. 3. Excitation dependence on quench rate. The amount
of excitation and kinetic energy determined from TOF images
is shown as the quench rate 1/τQ is varied. The measured off-
set χ̃2

0 is subtracted from χ̃2. Analogously, the measured ex-
pansion energy without the quenchKE0 (determined by aver-
aging across images with s0 < 13ER) is subtracted from KE.
For comparison, the critical temperature for condensation in
the trap before turning on the lattice and after bandmapping
is approximately 100 nK. The inset shows the experimental
timeline.

nex ∼ 1/τ
1/2
Q , which is the areal density of vortex lines.

Also, the finite size of the gas will affect quench dynamics,
as discussed in Ref. [11] for the BH model in 1D. Finally,
since the data here were taken at low but finite tempera-
ture (the initial condensate fraction was more than 90%
before turning on the lattice), thermal effects may play
an important role in the quench dynamics [7, 27].
In conclusion, the method we have demonstrated pro-

vides a window into excited states and dynamics, which
are beyond our current theoretical understanding in a
wide variety of strongly interacting many-body quantum
systems. Quench dynamics may also have significant con-
sequences for thermometry in optical lattice experiments
[28]. One commonly employed technique to estimate
temperature in a lattice is to slowly turn off the lattice
potential, measure temperature, and then infer entropy
in the lattice assuming that the turn off was adiabatic.

We find across a wide range of linear lattice quench rates
that adiabaticity is violated; for example, for a quench
from s0 = 20ER, χ̃

2 decreases from 0.17 to only 0.12 for
turn-off times varying from 5 to 25 ms.
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