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We use two fundamental theoretical frameworks to study the finite-size (shell) properties of the
unitary gas in a periodic box: 1) an ab initio Quantum Monte Carlo (qmc) calculation for boxes
containing 4 to 130 particles provides a precise and complete characterization of the finite-size
behavior, and 2) a new Density Functional Theory (dft) fully encapsulates these effects. The dft

predicts vanishing shell structure for systems comprising more than 50 particles, and allows us to
extrapolate the qmc results to the thermodynamic limit, providing the tightest bound to date on
the ground-state energy of the unitary gas: ξS ≤ 0.383(1). We also apply the new functional to
few-particle harmonically trapped systems, comparing with previous calculations.
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The fermion many-body problem plays a fundamental
role in a vast array of physical systems, from dilute gases
of cold atoms, to nuclear physics in nuclei and neutron
stars. The universal character of this problem – each
system is governed by a similar microscopic theory – cou-
pled with direct experimental access in cold atoms, has
led to an explosion of recent interest (see Refs. [1] for
a review). Despite this broad applicability, we are far
from fully understanding even the simplest system: the
“unitary gas” comprising equal numbers of two fermionic
species interacting with a resonant s-wave interaction of
infinite scattering length as → ∞. Lacking any scale be-
yond the total density n+ = na + nb, the unitary gas
eschews perturbative expansion and requires experimen-
tal measurement or accurate numerical simulation for a
quantitative description – the latter is presently more pre-
cise. Simulation is costly, however, and typical Quantum
Monte Carlo (qmc) calculations can access at most a
few hundred particles. Density Functional Theory (dft)
provides a complementary approach through which one
may extrapolate these results to large systems beyond
the reach of direct simulation.

In this Letter, we present the most precise qmc calcula-
tions to date of the unitary gas in a periodic box, study-
ing from 4 to 130 particles, thereby providing a bench-
mark for many-body theories. We use this to calibrate
a local dft, then use this dft to study the finite-size ef-
fects (“shell” effects in nuclear physics) and extrapolate
the qmc results to the thermodynamic limit. We provide
the most precise bound to date of the universal Bertsch
parameter [2] ξS = E/EF G ≤ 0.383(1). (EF G = 3/5n+EF

is the energy density of a free Fermi gas with the same to-
tal density n+ = k3

F /(3π2), and EF = ~
2k2

F /(2m) is the
Fermi energy.) We also explore the finite-size properties
of the dft – a crucial element in the program to calculate
properties of finite nuclei with a universal dft [3]. We
find that a local dft can capture the finite-size effects
in these systems without the need for particle number
projection. We limit our discussion to strictly symmetric

systems (na = nb), leaving odd-even staggering to future
work, as the dft then requires an additional dimension-
less parameter to characterize the asymmetry na 6= nb.

The qmc results presented here are directly applicable
to cold 6Li or 40K atoms, and constrain dilute neutron
matter in neutron stars [4]; likewise, the general dft ap-
proach has myriads of applications throughout cold-atom
and nuclear physics (see Ref. [5] for a review). Our cal-
culation of ξS is consistent with previous results, but
an order of magnitude more precise. Continuum qmc

bounds ξS . 0.40 – 0.44 with an uncertainty no better
than the last digit [4, 6–10]. Lattice qmc results range
from ξS ≈ 0.3 – 0.4 [11–13], comparable to analytic re-
sults [14]. Experimental groups found qualitative agree-
ment [15], which led to precision measurements: notably
with Duke [16] and Paris [17] quoting 0.39(2) and 0.41(1)
respectively.

Dft is an in principle exact approach, widely used
in quantum chemistry to describe normal (i.e., non-
superfluid) systems, and in nuclear physics [18]. It has
recently been extended to describe the unitary gas [5, 19–
21]. We build upon one such approach called the Su-
perfluid Local Density Approximation (slda) that was
originally constrained by qmc calculations of the contin-
uum state and then validated with qmc calculations in
a harmonic trap [22, 23] (see also Fig. 2). We focus on
translationally invariant systems in a periodic box to iso-
late the finite-size effects from the gradient effects, and
find that the inclusion of an anomalous density is crucial:
functionals attempting to model the superfluid by adding
only gradient or kinetic corrections [19, 21] are unable to
even qualitatively characterize the finite-size effects.

Our qmc results are based on a fixed-node Diffusion
Monte Carlo approach that projects out the state of low-
est energy from the space of all wave functions with fixed
nodal structure as defined by an initial many-body wave
function (ansatz). By varying the ansatz, we obtain a
variational upper bound on the ground state energy. In
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FIG. 1. (color online) Ground-state energy-density ξ =
E/EF G of N+ fermions in a periodic cubic box at the uni-
tary limit. The circles with error bars are the result of using a
quadratic least-squares extrapolation to zero effective range of
our new qmc results. The solid curve is the best fit slda dft.
The light dotted curve is the functional considered in [19] with
α = 0.69. For comparison, we have plotted the previous best
estimate ξS = 0.40(1) (red square) and the current estimate
ξS = 0.383(1) below it to the far right of the figure. Inset: we
show the typical effective-range dependence ξ(kF re) with the
best fit 1σ error-bounds for all-point cubic (solid blue) and
five-point quadratic (hatched yellow) polynomial fits. Note
that: a) the five-point quadratic model is consistent with the
full cubic model and has a comparable extrapolation error,
b) the inflection point near kF re ≈ 0.16 necessitates a higher
order fit for larger ranges (cubic is sufficient for the ranges
shown here). Results for N+ = 40 show the same qualitative
behaviour, hence, for the other points we use the five-point
quadratic extrapolation.

this work, we use the trial function introduced in [6]:

ΨT = A[φ(r11′ )φ(r22′ ) · · · φ(rnn′ )]
∏

ij′

f(rij′ ), (1)

where A antisymmetrizes over particles of the same spin
(either primed or unprimed) and f(r) is a nodeless Jas-
trow function introduced to reduce the statistical error.
The antisymmetrized product of s-wave pairing functions
φ(rii′ ) defines the nodal structure:

φ(r) =
∑

n

α‖n‖eikn·r + β̃(r). (2)

The sum is truncated (we include ten coefficients) and the
omitted short-range tail is modelled by the phenomeno-
logical function β̃(r) chosen to ensure smooth behavior
near zero separation. We use the same form for β̃(r) as
in [6] with the values b = 0.5 and c = 5. We vary the 10
coefficients α‖n‖ for each N+ to minimize the energy as
described in Ref. [24]. Representative nodal structures
are defined by the coefficients in Table I. We find that
the same ansatz suffices for different effective ranges, but
that independent optimization is required for each N+.

We simulate the Hamiltonian:

H =
~

2

2m

(

−
N+
∑

k=1

∇2
k − 4v0µ2

∑

i,j′

sech2(µrij′ )

)

, (3)

with an inter-species interaction of the modified Pöschl-
Teller type (off-resonance intra-species interactions are
neglected). We tune to infinite s-wave scattering length
by setting v0 = 1: the effective range becomes re = 2/µ.
To extrapolate to the zero-range limit, we simulate at
µ/kF ∈ {12.5, 24, 36, 48, 60} for which 0.03 < kF re <
0.16. A careful examination of additional ranges up to
kF re ∼ 0.35 for N+ = 40 and N+ = 66 (see the inset in
Fig. 1) reveals that a three-parameter quadratic model
in re is necessary and sufficient to extrapolate our results
without a systematic bias; the results are shown in Fig. 1.

The energies exhibit definite finite-size effects for N+ .

50, but are essentially featureless for larger N+. This
lack of structure is confirmed by the best fit dft (dis-
cussed below) and disagrees with the results presented in
Ref. [10]. The values of ξ for N+ > 50 are distributed
about the best fit value ξS ≈ 0.383(1), and represent the
lowest variational bounds to date. Part of the decrease
from previous results is due to the careful extrapolation
to zero effective range. The remainder is due to the im-
proved optimization of the variational wave function.

To model the finite-size effects we turn to a local dft

for the unitary Fermi gas that generalizes the slda orig-
inally presented in Ref. [20]. In addition to the total
density n+ = 2

∑

n|vn|2, the slda includes both kinetic
τ+ = 2

∑

n|∇vn|2 and anomalous densities ν =
∑

n unv∗
n.

(The + index signifies the sum of the contributions com-
ing from the two components a and b; un(r) and vn(r)
are the Bogoliubov quasiparticle wave functions.) The
original 3-parameter slda functional has the form

Eslda =
~

2

m

(

α

2
τ+ + β

3

10
(3π2)2/3n

5/3

+

)

+ gν†ν, (4)

where α is the inverse effective mass; β is the self-energy;
and γ, which controls the pairing, enters through the

regularized coupling g = 1/(n
1/3

+ /γ−Λ/α) where Λ → ∞
is a momentum cutoff that we take to infinity (see Ref. [5]
for details). Using the equations for homogeneous matter

N+ a0 a1 a2 a3 a4 a5 a6 a8 a9 a10

10 1600 350 49 16 12 14 14 11 9.0 6.7

40 160 91 27 0.49 -2.8 -0.086 2.2 2.9 2.5 1.9

80 -24 13 12 8.2 5.1 3.7 2.7 2.0 1.6 1.0

120 -51 -17 0.51 7.8 6.3 5.8 4.6 2.5 1.7 1.0

TABLE I. Sample coefficients of the pairing function (2)
α‖n‖ = 10−4aI where I = ‖n‖2 = n2

x + n2
y + n2

z = k2L2/4π2.
Higher-order coefficients are set to zero.
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in the thermodynamic limit, one can numerically replace
the parameters β and γ with the more physically relevant
quantities ξS and η = ∆/EF , where ∆ is the pairing gap.

In principle, the dft can be expressed in terms of
only the density n+ and its gradients. References [21]
consider local formulations of this type (called Extended
Thomas-Fermi (etf) functionals). Since gradients vanish
in the periodic box, etf functionals reduce to Eetf(n+) ≡
ξSEF G and exhibit no finite-size structure, contrary to
the qmc results. Reference [19] adds ατ+, but without
ν†ν, the finite-size effects do not correlate with the qmc

behavior, (see Fig. 1), and the best fit to our results is
also flat (α → 0). Furthermore, such functionals cannot
qualitatively reproduce the quasiparticle dispersion rela-
tionship, an attractive feature of the slda (see also [25]).

The best fit three-parameter slda functional (4) –
α = 1.26(2), ξS = 0.3826(5), and η = 0.87(2) – is shown
in Fig. 1. It fits the 23 qmc points from N+ = 4 to
N+ = 130 with a reduced chi squared χ2

r = 0.7, indi-
cating complete consistency. Although remarkable, the
fit is not completely satisfactory: 1) It does not fit the
exact two-particle energy ξ2 = −1.5641 · · · , and 2) the
best fit gap parameter η and inverse effective mass α are
inconsistent with the values η = 0.50(5) and α = 1.09(2)
obtained from the N+ = 66 qmc quasiparticle disper-
sion relation [8, 26], and the values η = 0.45(5) [27] and
η = 0.44(3) [28] extracted from experimental data.

These deficiencies might be remedied by generalizing
the slda. As noted in Ref. [5], the following combination
of divergent kinetic and anomalous densities is finite:

K =
~

2τ+

2m
+

g

α
ν†ν =

~
2τ+

2m
+

ν†ν

αn
1/3

+ /γ − Λ
. (5)

The lack of scales thus dictates the functional form:

E(K, n+) = ξ(Q) EF G(n+), Q = K/EF G(n+), (6)

where Q is dimensionless, and the regularization con-
dition depends on Q through the function γ(Q). The
original slda is linear ξ(Q) = αQ + β with constant
γ(Q) = γ. This generalized functional can fit any mono-
tonic ξ(N+), including the exact N+ = 2 point. For
N+ > 6, ξ(N+) is not monotonic and the functional
is in principle constrained. For example, requiring that
ξ = ξS at both N+ ≈ 6.2(2) and N+ = ∞ fixes the ratio
η/α = 0.69(2). (As an aside, we note that the momentum
distribution nk in the dft relates this to the “contact”
C: η/α =

√
2C/k2

F ≈ 0.44 – 0.49; see [29] and Refs.
therein, though it is not clear that this property should
be trusted.) In practice, the errors and the discreteness in
N+ still leave room for flexibility in the functional form,
and we have found several generalized functional forms
with χ2

r ≈ 1.5 while constraining η = 0.50. We may have
to accept the discrepancy in α as a limitation of the dft.

However, generalizing the slda may not be needed:
analyzing the “symmetric heavy-light ansatz” [30], (jus-
tified by lattice qmc calculations [12]), we find that the

FIG. 2. Ground-state energy of the harmonically-trapped uni-
tary Fermi gas (in units where ~ω = 1) scaled to demonstrate

the asymptotic form 16E2/(3N+)8/3 = ξS

(

1+ cx+O(x7/6)
)

2

predicted by the low-energy effective theory of Ref. [32]. The
best fit slda (solid blue line) is compared with zero-range
results for N+ ∈ {4, 6} from Ref. [33], and finite-range qmc

results from Ref. [23] (upper red dots) and Ref. [34] (green
pluses). The latter have significantly lower energy, despite
having a slightly large effective range, suggesting that the
wave functions in Ref. [23] were not fully optimized. We
expect careful optimization and zero-range–extrapolation to
bring the qmc results for large N+ in line with the dft as
discussed below.

simple three-parameter slda suffices (χ2
r ≈ 0.5) with rea-

sonable α = 0.96(2), η = 0.51(1), and ξ = 0.322(2) –
slightly higher than the ξ = 0.31(1) extracted in [30].

It is not trivial that the simple dft (4) captures all
finite-size effects above N+ = 4 to high precision in both
calculations, indicating that the slda may be used to
extrapolate to the thermodynamic limit. We note that
no particle-number projection is required – a quite ill-
defined procedure often considered necessary in nuclear
physics [31]: Perhaps improved nuclear functionals may
similarly capture finite-size effects through local anoma-
lous densities in the spirit of ν.

To finish, we consider harmonically trapped systems
in Fig. 2. As discussed in [32], the energy may be ex-
pressed as E(N+) = 1

4
~ω

√
ξS(3N+)4/3

(

1+ cx+O(x7/6)
)

where x = (3N+)−2/3 and c is expressed in terms of low-
energy coefficients. As demonstrated by the zero-range
N+ ∈ {4, 6} results of [33], the dft still over-estimates
the energy for small systems, most likely because: 1) the
form of the functional ξ(Q) for the small values of Q seen
in the cores of the traps, and for large values of Q seen
in the tails, remains largely unconstrained by our box
results which – with the exception of the single N = 2
point at negative Q – explore only the region from −26%
to +5% of the thermodynamic value; 2) we have omit-
ted the gradient terms in the functional that vanish in
homogeneous systems.

For large N+ the dft has the expected asymptotic
form with intercept ξS = 0.383 unlike the finite-range
qmc results of Refs. [23, 34]. This is qualitatively con-
sistent with the leading effective range corrections which
scale asymptotically as x−1/4; the systematic overesti-
mation of the energies by the variational qmc approach
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might also contribute. We defer further discussion of
these issues until carefully extrapolated zero-range re-
sults are published.

To summarize, we present the most precise Quantum
Monte Carlo calculations to date of a symmetric unitary
Fermi gas in a periodic box comprising 4 to 130 particles.
By carefully characterizing and extrapolating these re-
sults to zero effective range, we have completely mapped
out the finite-size effects. These results are used to ana-
lyze the structure of a Density Functional Theory for the
symmetric unitary gas, and it is shown that the simplest
three-parameter form of Eq. (4) fully accounts for all shell
effects to within the statistical errors of the qmc results
without the need for particle-number projection; a more
complicated form, however, may be required to capture
both the finite-size effects and the quasiparticle disper-
sions. The dft predicts no significant shell corrections
beyond 50 particles, and the qmc confirms this, allow-
ing us to extract a precise upper bound on the universal
equation of state ξS ≤ 0.383(1), an order of magnitude
improvement in precision over previous bounds and the
lowest bound of any variational method to date. The
functional in its latest form is well constrained, but leads
to slight disagreements with qmc predictions for har-
monic traps. Converging both qmc and dft approaches
promises to be a fruitful direction of future research.
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