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Stress induced dislocation roughening – phase transition in 1d at finite temperature
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We present an example of a generically forbidden phase transition in 1d at finite temperature –
stress induced and thermally assisted roughening of a superclimbing dislocation in a Peierls potential.
We also argue that such roughening is behind the strong suppression of the superflow through solid
4He in a narrow temperature range recently observed by Ray and Hallock (Phys.Rev. Lett. 105,
145301 (2010)).

PACS numbers: 67.80.bd, 67.80.dj, 67.80.-s

Strong interest in the supersolid state of matter in free
space [1] has been revived by the recent discovery of the
torsional oscillator (TO) anomaly in solid 4He [2]. While
finding no supersolidity in the ideal 4He crystal, ab ini-

tio quantum Monte Carlo simulations did find that some
grain boundaries [3], dislocations [4, 5] or crystal bound-
aries [6] support low-d superfluidity spatially modulated
by the surrounding lattice. In principle, a percolating
network of superfluid dislocations [7] could explain the
TO anomaly if the dislocation density is 3-4 orders of
magnitude higher than it is expected to be in a slowly
grown and well annealed crystal. Consistent with such
expectation is also a very small rate of the critical super-
flow through solid 4He (occuring presumably along dis-
locations with superfluid cores) observed in the UMASS-
Sandwich experiments [8, 9]. Thus the nature of the TO
anomaly in solid 4He remains unclear.

In the present work we focus on the very unexpected
feature of the UMASS-Sandwich experiment [9] – the
strong suppression of the supercritical flow rate Vcr (by
about 3-4 times!) and then its recovery in a narrow range
of temperatures. Such a feature occurs well below (about
10 times) the flow onset temperature TO ≈ 0.5−0.6K [9].
Here we are proposing an explanation within the model
of superclimbing dislocation [5], biased by an externally
imposed chemical potential µ which generates a stress on
the dislocation core and, thus creates spontaneous jog-
antijog pairs.

Jog-antijog pairs as quantum objects can be created
spontaneously by a macroscopically small stress σ ≥ σc ∝
1/L applied to a superclimbing dislocation of length L –
analogous to the creation of kink-antikink pairs along a
stressed gliding dislocation [10, 11]. We have found that
such an instability leads to a first-order phase transition
even at finite temperature T between two phases of the
dislocation – smooth and rough. This transition is in an
apparent violation of Landau’s argument ”no phase tran-
sitions in 1d at finite T ” [12]. However, we argue that
the locality of order parameter(s), which is essential for
the validity of Landau’s argument, is not present here.
Consequently, in a sharp contrast with conventional 1d
systems, where any macroscopic characteristic length de-

creases with increasing T [12], a typical scale Lh for the
onset of the hysteretic behavior of the superclimbing dis-
location increases with T .

The effective description of such a transition invokes
a single coarse grained macroscopic degree of freedom
– dislocation deformation characterized by an effective
mass and a potential energy with two minima. These
quantities are scaled as some positive powers of L even
at T 6= 0, so that the amplitude of the transition between
the minima decays exponentially as L → ∞ – very much
like d > 1 systems undergoing first-order transition.
However, due to the strongly interacting and effectively
long-range nature of the rough phase, specifics of such
size dependencies cannot be derived analytically, and we
have evaluated them numerically.

The model and its Monte-Carlo simulations. Superclimb-
ing dislocation is modeled as a quantum string oriented
along the x-axis and strongly pinned at its both ends
x = 0, L [13]. The string displacement y(x, t) along the
y-axis depends on the time t and is measured in units of
the inter-atomic spacing (≈ Burger’s vector b) with re-
spect to its equilibrium y = 0 (no tilting is considered).
The Peierls potential induced by the crystal is taken as
UP = −uP cos (2πy(x, t)). The partition function Z has
the form [5, 14]

Z =

∫

Dy(x, t)Dρ(x, t)Dφ(x, t) exp(−S), (1)
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− uP cos (2πy(x, t))− Fy(x, t)], (2)

where all the variables are periodic in the imaginary time
t ≥ 0 with the period β = 1/T (units ~ = 1, KB =
1); the core density ρ and the superfluid phase φ are
canonically conjugate variables, with ρ′ = ρ−y being the
local superfluid density; the derivatives ∇t,xy, ∇t,xφ are
understood as finite differences in the discretized space-
time lattice (with 200 time slices and x = 0, 1, 2, ..., L
in units of b), with ∇t,xφ defined modulo 2π (in order
to take into account phase-slips); n0, ρ0 stand for the
average filling factor ( we choose n0 = 1) and the bare
superfluid stiffness, respectively, with the bare speed of
first sound taken as unity.
The first two terms in Eq.(2) describe the superfluid
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response of the core [5], and the third term accounts for
the superclimb effect [5] – building the dislocation edge
so that the core climb y → y± 1,±2, ... becomes possible
by delivering matter ρ → ρ±1,±2, ..., respectively, along
the core [5]. The dislocation is assumed to be attached
to large superfluid reservoirs at both ends, with spatially
periodic boundary conditions for the supercurrent.

The terms ∝ m in Eq.(2) account for the elastic re-
sponse of the string, with m and Vd standing for the ef-
fective mass of the dislocation core (per b) and the bare
speed of sound, respectively. Since the main source of
kinetic energy are supercurrents, we have left out the
term ∼ (∇ty)

2 in Eq.(2). The parameter m in Eq.(2)
is not actually a constant. It contains a contribution
from the Coulomb-type interaction potential ∝ 1/|x|
between jogs (or kinks, cf. [15]) separated by a dis-
tance x [10]. Accordingly, m has a logarithmic diver-
gent factor with respect to a wave vector q along the

core m(q) = m0 ·
[

1 + UC ln
(

1 + 1
(bq)2

)]

, where m0 is

of the order of the atomic 4He mass and UC ∼ 1 is a
parameter characterizing the strength of the interaction
[14, 15]. In solid 4He, the zero-point fluctuation parame-
ter K = π~/(4m0bVd) ∼ 1 [15]. We present our numeri-
cal results for UC = 1, V 2

d = 5,K = 1. It is important to
note that the main results are not qualitatively sensitive
to the long-range interaction.

The linear force density F ≈ bσ (ignoring spatial in-
dices) in Eq.(2) is determined by the external stress σ
induced by the chemical potential difference δµ applied
in the setup [9]: δµ ≈ δpb3, with δp being the result-
ing overpressure. Thus σ = δµ/b3, i.e. in units of b
σ = δµ = δp = F .

Monte Carlo simulations have been conducted with the
Worm Algorithm (WA) [16] for the superfluid part of the
action, with the Peierls term treated within the Villain
approximation similarly to Refs. [14, 15]. The renor-
malized superfluid stiffness ρs(T, F ) and compressibility
κ(T, F ) have been calculated in terms of the windings
of the dual variables [14–16]. No significant effect of
the bias F was found on ρs(T, F ), and thus we consider
ρs(T, F ) = ρs(T, 0) ≡ ρs(T ). In contrast, κ(T, F ) does
experience quite dramatic renormalization, which is the
focus of the present work.

The bare stiffness ρ0(T ) vanishes above some tempera-
ture T0 comparable to the bulk λ-temperature (∼ 1−2K).
We have used T0 = 0.2 (in the dimensionless units as
a fraction of the Debye temperature TD for the first
sound), and considered low temperatures – such that
ρs(T ) stayed unchanged within 1-10% of its T = 0 value.
In other words, the thermal length LT ≈ ρs(0)/T , above
which ρs(T ) becomes suppressed, is the largest scale in
the problem.

We have also calculated full χ1 = δN/δF and dif-
ferential χ2 = dN/dF isochoric compressibilities of the
dislocation [14], where δN is the full amount of mat-
ter accumulated in the extra plane forming the super-
climbing (edge) dislocation in response to the varia-
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FIG. 1: (Color online) Renormalized superfluid stiffness ρs(T )
and the velocity Vs(T, F ) of first sound normalized by their
respective low-T values for different F (shown on the inset),
L = 30, uP = 3.0. Inset: the region of the dip (cf. Fig.4 of
Ref.[9]) showing its shifting with F .

tion of F . These compressibilities obey the relationship
χ2 = χ1+Fdχ1/dF , and in the linear regime χ1 ≈ χ2. It
is found that κ ∝ χ2/L in the strongly fluctuating regime.
However, despite such similarity, κ and χ2/L are not one
and the same quantity: while χ2 describes the shifting of
the dislocation position, κ accounts for the time depen-
dent response of the superfluid phase φ. In other words,
κ and ρs enter as renormalized coefficients of the effective
superfluid action Sφ =

∫

dx
∫

dτ [ρs(∂xφ)
2/2+κ (∂tφ)

2/2]
[17], where the renormalized speed of first sound

Vs(T, F ) =
√

ρs/κ. (3)

In the absence of the Peierls potential or at high
T (where still ρs(T ) ≈ ρs(0)), χ1,2 are practically
equal to the free string response χ0 ≈ L3/[12m0(1 +
2UC ln(L/b))V 2

d ] (considered in Ref. [13] for UC = 0).
We introduce the normalized quantities R1,2 ≡ χ1,2/χ0:

R2 = R1 + FdR1/dF, (4)

so that R2 = R1 = 1 for uP = 0.
Our main findings presented below are the following:

i) a narrow dip in Vs(T, F ) vs T at some macroscopically

small F = Fc; ii) periodicity of Vs(T, F ) with respect to
the bias F ; iii) exponential scaling of the dip depth with
L; iv) hysteresis developing beyond a certain length Lh

growing with T .

Dip in the flow rate. The speed (3) sets the value of
the critical flow rate Vcr ≈ Vs(T, F ) as a threshold for
generating phase slips in 1d – similar to the scenario of
Ref.[18]. Since κ (and R2) exhibits a resonant-type peak,
Vs acquires the dip shown in Fig.1. Its depth depends
on L and how closely F is tuned to the threshold value
Fc ∝ L−γ , γ ≈ 1−1.7, for the jog-antijog pair creation at
given T (see the inset,Fig. 1). We believe such a dip has
actually been detected by Ray & Hallock (cf. Fig.4 in
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FIG. 2: (Color online) Typical behaviors of κ, R1,2 vs F :
L = 56, T/T0 = 0.05, uP = 3.0. Dashed line – the prediction
of the free string model (uP = 0) [13].
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FIG. 3: (Color online) Vs(F ) normalized as in Fig.1. The
parameters are the same as in Fig.2. The narrow dips occur
at the thresholds F = Fc(L, n), n = 1, 2, 3 for n jog-antijog
pairs creation (see the text – Periodicity vs external bias).

Ref.[9]). Away from the dip, Vs is practically insensitive
to F , and the responses κ, R2 become essentially linear
in F [14].

Periodicity vs external bias. One of the most strik-
ing features we have found is the quasi-periodicity
in F of κ, R2 as shown in Fig. 2, and in Vs as
shown in Fig. 3. We attribute this to the reaching
of the thresholds for creating multiple jog-antijog
pairs. Thus, the peak (dip) positions are given as
F = Fc(L, n) ≈ nFc(L, 1) ∼ nL−γ , n = 1, 2, 3, ..., and
we predict that the dip in the flow rate observed in
Ref.[9] (see Fig.4 there) should recur as a function of the
applied bias, provided T is kept fixed.

Size dependencies. Transformation between the smooth

(where R1 << 1) and the rough (R1 ≈ 1) states occurs
within an exponentially narrow region δF around Fc.
It is given by the tunneling rate ∼ exp(−L/LR) << 1
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FIG. 4: (Color online) Height of the first resonance peak
in R2(F = Fc) ∝ κ vs L for various parameters (symbols)
and its fit (lines) by R2 = exp(A + L/LR) + B with three
adjustable parameters A,LR, B. Deviations from the fit at
large L (shown by arrows) mark the beginning of the hys-
teretic behavior. Dashed line – the free string model value
(R1 = R2 = 1) [13].
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FIG. 5: (Color online) Plots of Fc, Fu, FL vs L (symbols) and
their fits (lines). The vertical arrow separates the resonant-
type peaks in Fig.2 ( L < Lh), and the hysteresis (L > Lh).
Inset: a typical scan in F shown by the horizontal arrows,
with the vertical arrows indicating the upper Fu and the lower
FL ”coercivity” stresses.

through the macroscopic jog-antijog barrier (cf. the
mechanism for the kink-antikink tunneling, Ref.[11]),
where LR stands for the tunneling length. Thus, as fol-
lows from Eq.(4), the peak value of R2(T, Fc) diverges
with L as ≈ 1/δF ∼ exp(L/LR). Fitting R2(T, Fc) by
an exponential function, Fig.4, gives L−1

R ≈ L−1
0 (1 −

T/TR)
2.3. Here L0 is the T = 0 tunneling length

(L0 ≈ 1.7 for uP = 3.0) and TR sets the scale for ther-
mal roughening, i.e. the temperature above which the
density of jog pairs is large even in the limit F → 0.
TR is determined by the double energy 2∆ ∝ √

uP of a
jog modeled as a Sine-Gordon soliton. We have found
TR ∝ us

P , s = 0.5± 0.1 which is consistent with such an
interpretation.
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The critical stress Fc(L, 1) has been found to deviate
from the 1/L dependence [11] at finite T . Specifically,
Fc ∝ 1/Lγ(T ) with γ(T ) > 1. As T grows, γ(T ) → 1.7,
and γ(T ) → 1 in the limit T → 0. The temperature
scale for this variation is set by the Peierls potential
amplitude uP as well. It is natural to attribute the
deviation from γ = 1 to a suppression of the energy gap
∆ ∝ L1−γ → 0 at finite T .

Hysteresis. The resonant-peak type behavior in R2 (and
in κ) turns out to be a precursor for the jump in R1. As
seen from Eq.(4), R2 ≈ FcdR1/dF ∼ Fc/δF as δF → 0.
The hysteresis emerges when δF becomes significantly
less than the coexistence region for the smooth and rough

states. This conditions sets a typical length Lh above
which (L > Lh) hysteresis develops. We have found that
Lh grows with T as Lh ≈ L0(T/Ts)

γh ≫ L0, γh > 0
(γh ≈ 2 − 3 for uP = 1 − 3). We attribute the en-
ergy scale Ts to the tunneling splitting energy through
the microscopic jog-antijog barrier so that Ts ≪ TR [19].
This feature is clearly due to the collective multi-jog na-
ture of the rough state, and it deviates strongly from the
single pair tunneling scenario [11] (see Eq.(39)) where
the tunneling rate saturates at some length decreasing as
∝ T−3/2.
Fig.5 demonstrates the L-dependencies of the ”coerciv-

ity fields”.Along the lower branch of the hysteresis loop
(inset in Fig.5) the dislocation is in the smooth state.
Upon increasing F , it ”jumps” into the rough state at
F ≈ Fu. While ”moving” back along the upper branch
representing the rough state, the dislocation returns into
the smooth state at F ≈ FL < Fu. As seen from the main
panel of Fig.5, both fields scale as Fu,L ∝ L−γu,L , with
γu ≈ 0.4 and γL ≈ 2.7, respectively. The middle straight
line corresponds to the extrapolation of the peak posi-
tion data Fc ∝ L−γ , n = 1, γ ≈ 1.7 (for L < Lh). Such
strong sensitivity to the size L as well as Lh growing with

T clearly indicate that the stress-induced roughening is
a phase transition at finite T in 1d.

The resonant-type behavior and the hysteresis have
also been found in simulations of gliding dislocation
[14]. While LT determines the upper spatial scale for
the superclimb, no such restriction exists for the glide,
so that the formal limit L → ∞ can be considered.

Discussion and conclusions. The narrow dip in the su-
perflow rate observed in Ref.[9] may have its origin in the
stress induced roughening effect of superclimbing dislo-
cations. Specifically, biasing a superfluid dislocation net-
work by macroscopically small overpressure can induce
strong suppression of the first sound along the superfluid
cores. Such suppression is characterized by the periodic-
ity of the dip in the flow rate, Fig.3, which can be used
as the experimentum crucis for the proposed scenario.
We estimate the critical overpressure δp in terms of L
and a typical jog-antijog energy 2∆ ≈ 0.1K (cf. [15])
as δp/p ≈ 2∆b/(LTD) ∼ 10−2b/L. Measurements of δp
where the dip recurs can provide crucial information on
the nature of the dislocation network – its typical free
segment length L.

As T is lowered, the opposite condition L > Lh

is fulfilled so that the dislocation behavior becomes
hysteretic between its smooth and rough states. We
believe it is also important to study the hysteresis in the
flow rate vs chemical potential (the upper Fu and the
lower FL fields) at different temperatures.
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