
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Lattice-Induced Resonances in One-Dimensional Bosonic
Systems

Javier von Stecher, Victor Gurarie, Leo Radzihovsky, and Ana Maria Rey
Phys. Rev. Lett. 106, 235301 — Published  6 June 2011

DOI: 10.1103/PhysRevLett.106.235301

http://dx.doi.org/10.1103/PhysRevLett.106.235301


Lattice Induced Resonances in One Dimensional Atomic Systems

Javier von Stecher1, Victor Gurarie2, Leo Radzihovsky2, Ana Maria Rey1
1JILA, University of Colorado and National Institute of Standard and Technology, Boulder, CO 80309-0440,USA and

2Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

We study the resonant effects produced when a Feshbach dimer crosses a scattering continuum band of atoms
in an optical lattice. We numerically obtain the exact spectrum of two particles in a one-dimensional lattice
and develop an effective atom-dimer Hamiltonian that accurately captures resonant effects. The lattice-induced
resonances lead to the formation of bound states simultaneously above and below the scattering continuum
and significantly modify the curvature of the dimer dispersion relation. The nature of the atom-dimer coupling
depends strongly on the parity of the dimer state leading to a novel coupling in the case of negative parity dimers.
From the exact solutions we extract the dimer Wannier function from which we quantitatively determine the
effective Hamiltonian parameters for a many-body description.

PACS numbers:

Feshbach resonances [1] and optical lattices [2] are two
powerful experimental tools used to drive ultracold atomic
gases into the strongly correlated many-body regime. While
recent experiments have realized such resonant lattice sys-
tems [3], current understanding of them is limited, with tra-
ditional single-band Hubbard model failing to capture the res-
onant regime. However, a many-band description necessary
near a resonance (where interaction is much larger than the
band width and gap), when implemented directly may be un-
necessarily complicated and impractical for analytical stud-
ies. Thus, the development of better suited effective models
is highly desired and important first steps have been taken in
this direction [4, 5].

A prerequisite to establishing a correct many-body model is
a detailed understanding of the few-body physics. At the two-
body level, the lattice potential changes the scattering prop-
erties, shifting existing resonances and inducing new ones.
This occur when dimers formed with atoms in excited bands
cross and hybridize with the scattering continuum of the low-
est band [6]. While resembling confinement-induced reso-
nances [7], lattice resonances exhibit richer phenomenology
and are more challenging to describe due to the coupling be-
tween the relative and the center of mass degrees of freedom.
Previous two-body lattice studies [8] have mainly focused on
the properties of the lowest molecular state and its influence
in the scattering properties of atoms in the lowest band with
the virtual higher bands merely shifting the position of the
molecular resonance and renormalizing the parameters of the
single-band Hubbard model. Studies of double-well induced
resonances [6], however miss the quasi-momentum dispersion
intrinsic to the full lattice system.

In this Letter, we study the 1D lattice-induced resonances.
We derive an effective atom-dimer many-body model that cap-
tures all the features of our exact numerical solution of the
two-body problem summarized in Figs. 1 and 3. These in-
clude: (i) attractive and repulsive resonance-induced bound
states, that for a range of the center-of-mass momenta can si-
multaneously appear above and below the two-particle contin-
uum bands, (ii) 1D lattice resonances (absent in 1D lattice-free
systems) at the center-of-mass momenta, where a bound state

enters the two-particle continuum, (iii) strong interaction-
dependence of the molecular bound-state dispersion, that can
even be driven negative. The two-body results are indepen-
dent of the spin statistic of the constituent particles and there-
fore applicable to two-species fermions in a singlet state.
However, to develop an appropriate many-body effective de-
scription, in this letter we consider bosonic statistics. The ef-
fective Hamiltonian, inspired by the model from Ref. [4], is a
lattice projection of a two-channel model [9]. The novel fea-
ture of our model is a nearest neighbor atom (ai) - dimer (di)
Feshbach coupling,

Had = g
∑
i

d†iai(ai+1 + (−1)Pdai−1) + H.c. + ..., (1)

that depends sensitively on the dimer’s parity Pd = 0 (sym-
metric) Pd = 1 (antisymmetric), that is crucial to capturing
the dispersion of lattice-induced resonances and bound states.
We emphasize that the key atom-dimer coupling Had, Eq. (1)
proposed here, describes two atoms forming a dimer via a pro-
cess which depends on the dimer’s momentum, thus is not re-
lated to the usual two-channel model of Feshbach resonances.
We derived Eq. (1) via a careful analysis of the dimer orbital
structure, supported by exact diagonalization of a two-atom
Hamiltonian [Eq. (2) below] in a periodic potential.

Our starting point is the bosonic 1D lattice Hamiltonian
with contact interaction,

H =
∑
α

(
− ~2

2m

∂2

∂x2α
+ V0 sin

2(klxα)

)
+
∑
α<β

g1Dδ(xα−xβ),

(2)
where kl = π/a is the lattice wave vector, V0 is the lattice
depth, and a is the lattice constant. The Hamiltonian (2) has
become accessible with current experimental techniques [10]
by starting from three-dimensional lattice with tight confine-
ment (a⊥ � a|| where a⊥ and a|| are the oscillator lengths
associated with optical lattice wells in the perpendicular and
parallel directions) and negligible tunneling in the perpen-
dicular direction (J⊥ ≈ 0). The interactions are controlled
by tuning the scattering length as close to a Feshbach or
confined-induced resonance [7]. In the regime |as| < a⊥, the
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atoms remain well localized in the transversal ground state
and the low-energy behavior is described by Eq. (2) with
g1D ≈ 4~2as/(ma2⊥). The typical lattice energy scale is
ER = ~2k2l /2m and the dimensionless interaction strength
is λ = g1Dkl/Er. In free 1D space (V0 = 0), the two-body
Hamiltonian supports a bound state at an arbitrarily weak in-
teraction with a binding energy Eb = g21Dm/(4~2).

The two-boson Schrödinger equation is numerically solved
for a finite system with L sites and periodic boundary condi-
tions using a plane wave expansion [11]. The convergence
has been extensively tested by changing the lattice length
L = 1, ..., 21, and the basis dimension. Figures 1 and 3 sum-
marizes the numerical results for different lattice depths and
attractive interaction values. In our finite size studies, states
outside the scattering continuum bands of the infinite lattice
[colored regions in Figs. 1 (a) and 3] represent bound states
while the states inside the continuum bands are either scatter-
ing states or dimer states which are uncoupled to the scattering
continuum.
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FIG. 1: (Color online) (a) Two-body spectrum for a lattice with
V0 = 4Er as a function of K. Colored regions correspond to the
scattering continuum bands [lower region corresponds toE2a

0,0 (green
online), and the upper region corresponds to E2a

1,0 (red online)]. The
different curves correspond to the (0, 0), (1, 0) and (2, 0) bound
states at different interaction strengths λ. Note that the anharmonic-
ity of the lattice Hamiltonian splits the (2,0) and (1,1) degeneracy
lowering the (2,0) configuration. Thus, the (2,0) dimer state is lower
in energy than the (1,1) dimer state. (b) and (c) Exact solutions (solid
curves) and two-band Hubbard model predictions (dashed curves) of
the energyEd (b) and effective tunneling Jeff (c) for the lowest two
bound states of a lattice of V = 10Er . Shaded regions in (b) corre-
spond toE2a

0,0 andE2a
1,0 and the shaded region in (c) to the interaction

regime in which the excited dimer enters E2a
0,0.

In the noninteracting regime, the system is controlled by
single particle physics. The single particle energies are
grouped in bands E1a

n (k) with n ≥ 0 which in the tight bind-
ing regime take the form E1a

n (k) = εa,n − 2Ja,n cos(ka),
where εa,n =

∫
|wn,i(x)|2H0(x)dx is the onsite energy and

Ja,n =
∫
w∗n,i+1(x)H0(x)wn,i(x)dx is the nearest neighbor

tunneling. Here, H0 is the noninteracting part of the Hamil-
tonian [first term of Eq. 2], and wn,i(x) is the wannier func-
tion of band n centered at site i [12]. The two-body solutions

describe the scattering continuum bands [colored regions in
Fig. 1 (a)] which are the symmetrized product of the single-
particle eigenstates with energies E2a

n,m(K, k) = E1a
n (K/2 +

k) + E1a
m (K/2 − k), and can be classified by the band label

pair (n,m). For each scattering continuum, we can define the
typical band gap as ~ωnm = min(|εa,n + εa,m − εa,k − εa,l|)
with {k, l} 6= {n,m}.

For weakly interacting atoms (|g1D/a||| � ~ωnm) in
the tight-binding regime, a bound state is formed in the
vicinity of each isolated (not overlapping) scattering con-
tinuum (n,m) with parity Pd = (−1)n+m. A natural
starting point to capture the molecular behavior in Fig. 1 is
a tight binding model with each of the two particles with
its own (possibly the same) hoping Jn and Jm, and an
on-site interaction Unm = g1D

∫
|wm,i(x)|2|wn,i(x)|2dx

(of order of g1D/a||). This model can be solved analytically
giving a molecular spectrum Ed,tb(n,m)(K) = εa,n + εa,m +

sign(Unm)
√
U2
nm + 4J2

a,n + 4J2
a,m + 8Ja,nJa,m cos(Ka).

Solid and dashed curves in Figs. 1 (b) and (c)
present, respectively, the exact and the two-band
Hubbard model predictions of the molecular energy
Ed = [Ed,tb(n,m)(0) + Ed,tb(n,m)(π/a)]/2 and the effective

molecular hoping Jeffd = [Ed,tb(n,m)(π/a) − Ed,tb(n,m)(0)]/4

for the lowest two scattering continuums E2a
0,0 and E2a

1,0.
However, as can be seen in Figs. 1 (b) and (c), while this
description is accurate at weak interaction, it clearly breaks
down at larger interaction; it misses molecular band splitting
and hybridization with lower 2-particle continuum bands and
fails to capture the limit of tightly bound molecule discussed
below.

At stronger interactions (|g1D/a||| ∼ ~ωnm), an accu-
rate description of the two-body physics requires a number
of bands of the order O(~ωnm/Ja,n). The bound states
formed below each two-particle continuum at weak interac-
tions moves downward as the interaction strength increases
and eventually cross (and in the process, hybridize with) the
lower two-particle continua (see Figs. 1 (a) and 3 and [13]).
The specifics of how it hybridizes depends on which band it
came from [compare the (1,0) curves at λ = −3.9 and the
(2,0) curves at λ = −6 in Fig. 1 (a), and Figs. 3 (a) and (b)]
and constitutes the subject of our study. Close to the reso-
nance, the bound state dispersion relation is strongly modified
changing the sign Jeffd [see Fig. 1 (c)]. Figure 3 shows the
spectrum for the (1,0) and (2,0) lattice resonance deep in the
tight-binding regime. States inside E2a

0,0 represent the scat-
tering states which allow the determination of the scattering
properties of the atoms in the lowest band. Also, resonant
effects lead to the appearance of new bound states at either
the edges [Fig. 3 (a)] or the center [Fig. 3 (b)] of the Bril-
louin zone (BZ). As shown below, the qualitative differences
between the (1,0) and (2,0) lattice resonances are accurately
captured by the K-dependence of the atom-dimer coupling.

Finally, for sufficiently strong interactions (|g1D/a||| �
~ωnm), the tightly bound dimers which are not in resonance
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with the scattering continuum bands are well described by a
particle with mass 2m moving in a periodic potential with
depth 2V0. Our numerical calculations reproduce this limit-
ing behavior.

To gain more physical intuition on the lattice resonance
phenomena, we adopt a bosonic variant of an effective two-
channel lattice Hamiltonian proposed in Ref. [4]. For the sake
of simplicity, we focus on the effective Hamiltonian that de-
scribes the resonant two-body physics in an energy window
around the (n0, n0) two-particle continuum. More general
(n0,m0) continuum bands can also be analyzed in a similar
manner, but we postpone their discussion until later publica-
tion. We consider the interaction regime in which the dimer
is close in energy to the (n0, n0) atomic continuum band,
i.e., |εd − 2εa,n0 | � |εa,n0+1 − εa,n0 | where εd is the on-
site dimer energy. The effective description explicitly intro-
duces a localized bare dimer state |di〉 = d†i |0〉 as the only
energetically allowed double occupation of a lattice site. The
energies of n-occupied sites (n > 2) are significantly modi-
fied by the strong interactions and are expected to fall outside
the effective description energy window. Thus, we assume
that the n-occupied sites are energetically suppressed and we
impose this assumption by treating the atoms and dimers as
hard-core objects. The exact many-body Hamiltonian can be
formally reduced to the Hilbert space of empty, singly and
doubly occupied states [4] by applying the projector operator
Pad =

⊗
i Pad,i where Pad,i = |0i〉〈0i|+ |ai〉〈ai|+ |di〉〈di|

(here ai is the atomic annihilation operator). The leading in-
teractions terms in the tight-binding regime come from nearest
neighbor couplings which involve tunneling of only one atom:
i) the coupling of two atoms to a dimer and ii) the exchange of
an atom and a dimer in nearest neighbor sites. Keeping only
these terms, the effective Hamiltonian reduces to

Heff = P†ad

∑
i

εdd
†
idi − Jd

∑
〈i,j〉

d†idj − Ja
∑
〈i,j〉

a†iaj

+gex
∑
〈i,j〉

d†idja
†
jai +

∑
〈i,j〉

gi−j [d
†
iajai + a†ja

†
idi]

Pad,
(3)

where Ja = Ja,n0
(Jd) is the atomic (dimer) tunneling, g±1 is

the atom-dimer coupling and gex is the atom-dimer exchange
coupling. The Hamiltonian (3) can be equivalently under-
stood as arising from the lattice projection of the two-channel
model, restricted to nearest neighbor couplings between the
dominant near resonant closed-channel molecule and nearby
two-atom continuum.

A crucial aspect of the proposed effective Hamiltonian is
the dependence of the atom-dimer coupling on the relative
position (i − j = ±1) between atoms and dimers, g−1 =
(−1)Pdg+1. This dependence comes from the parity prop-
erties of dimer Wannier function which are directly related
to dimer symmetry with respect to the center-of-mass coordi-
nate. Since the one- and two-body Hamiltonians are invariant
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FIG. 2: (Color online) Effective Hamiltonian parameters as a func-
tion of V0.

under a reflection R that takes {ri} → {−ri}, the atom and
dimer Wannier functions are either symmetric (s-orbital) or
antisymmetric (p-orbital) under the reflection at the bottom of
the lattice site in which they are centered. By applying the re-
flection operationR to g±1, and using parity properties of the
Wannier functions we obtain g−1 = (−1)Pdg+1. This struc-
ture is crucial to capture the hybridization of different excited
dimers with the two-atom continua (see Fig. 3).

Once the effective Hamiltonian is established, the remain-
ing challenge is to quantitatively determine its parameters.
This requires a full lattice solution, not just single site ap-
proximation [4]. Associated to a dimer state, there is a dimer
Wannier function Wm(r1, r2) that can be used to obtain the
parameters of the effective Hamiltonian. The dimer Wannier
function can be determined by first solving the two-body prob-
lem in a reduced Hamiltonian H ′ = P†HP and then using
the dimer Bloch functions φm,K(r1, r2) to construct the dimer
Wannier function. Here P projects the Hilbert space outside
the (n0, n0) scattering continuum band, ensuring the orthog-
onality between the dimer and scattering states of the n0 band
[P = 1−P2a with P2a ≡

∑
i 6=j |aiaj〉〈aiaj |]. A similar pro-

cedure has been used to extract the “closed channel” dimer in
confinement induced resonances [14].

The reduced two-body Hamiltonian describes all dimer
bands and scattering continuum bands different from
(n0,n0). With the dimer Wannier function (center at
site i) Wm,i(r1, r2) = Wm(r1 − ia, r2 − ia) =

1/
√
L
∑
K e

iKiaφm,K(r1, r2) in hand, we extract the two-
body parameters of the effective Hamiltonian by requiring
that the matrix elements of the Heff match those of the ex-
act Hamiltonian, i.e., Jd = −〈di|H|d†i+1〉, εd = −〈di|H|d†i 〉
and g±1 = 〈di|H|a†ia

†
i±1〉. Alternatively, Jd and εd can be

estimated from the dimer band assuming that the dimer dis-
persion relation follows the tight binding prediction εd(K) =
εd − 2Jd cos(Ka). The gex coupling can be obtained sim-
ilarly and is expected to be of the order of the Ja, however
it only plays a role in a systems with more than two atoms.
Consequently, we leave its quantitative determination to fu-
ture publications [11].

In our numerical implementation, it is not simple to re-
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duce the exact Hamiltonian to H ′, so we apply an alternative
method to extract the dimer Bloch functions. First, we solve
the exact Hamiltonian at an interaction for which the dimer is
close to the scattering continuum but still weakly coupled to it.
Then, we Gram-Schmidt orthogonalize the dimer state from
the uncoupled scattering continuum (described by hard core
bosons) to obtain approximate description of the bare dimer
Bloch function and dispersion relation. Finally, we construct
the Wannier functions and extract the effective Hamiltonian
parameters. These parameters, illustrated in Fig. 2, converge
fast with the lattice size and only a few sites are needed to
reach convergence.
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FIG. 3: (Color online) Two-body spectrum at the lattice resonances.
Comparison of the exact and the model Hamiltonian predictions for
a lattice of 21 sites with periodic boundary conditions. Calculations
for V0 = 20Er at interactions for which the (1,0) and (2,0) dimers
are in resonance with the (0,0) scattering continuum. Shaded region
corresponds to the (0,0) scattering continuum. Larger and darker
(blue online) symbols correspond to the exact Hamiltonian predic-
tions while smaller and brighter (orange online) correspond to the
model predictions. The two results are almost indistinguishable.

The bound state and scattering two-body solutions of the
effective Hamiltonian (3),(1) can be solved analytically for
an infinite lattice. When solving the two-body problem at
fixed K, the atom-dimer coupling is proportional to gS(K) =
2g cos(Ka/2) for Pm = 0 and gA(K) = 2gi sin(Ka/2)
for Pm = 1. Thus, the atom-dimer coupling is maximum
at K = 0 for s-s coupling but at K = π/a for s-p cou-
pling. The two-body bound state energies are given by E =
J(K)(α+1/α) where J(K) = 2J cos(ka/2) and α is the so-
lution of J(K)−εd(K)α+(|gβ(K)|2−J2(K))α2/J(K) = 0
with the constraint |α| < 1. The analytical solutions allow
from zero to two bound states as found in the exact numer-
ical solution illustrated in Figs. 1, 3. A second bound state
appear for the K values at which the coupling is maximum,
i.e, edges of the BZ for Pm = 1 [see e.g. Fig. 3 (a)] and
center of the BZ for Pm = 0 [see e.g. Fig. 3 (b)]. If the
dimer is inside the scattering continuum and the coupling is
weak, the system supports metastable states whose lifetime
can be obtained by analytically continuing the bound state
solutions into the complex plane [see e.g. small K region
in Fig. 3 (a)]. The analytical solutions also reproduce the
two-body bound states of the single-band Hubbard model [15]

when |di〉 = a†ia
†
i |0〉/

√
2 and the coupling is of the symmetric

parity type (i.e., gS(K)). Under these conditions, g =
√
2Ja,

εd is the onsite interaction energy U , Jd = 0, and the bound
state energies are E = sign(U)

√
U2 + 16J2 cos2(ka/2). As

shown in Fig. 2, the atom-dimer coupling is even stronger
for excited dimers. For V0 = 40Er, g(1,0) ≈ 1.72Ja and
g(2,0) ≈ 1.90Ja and these values only change by a few per-
cents in the range V0 = 4–40Er and are in good qualitative
agreement with the predictions of Ref. [6].

To confirm the validity of the effective Hamiltonian (1),
(3), we solve the two-body problem for a finite lattice with
periodic boundary conditions using both the exact and the ef-
fective Hamiltonian in the resonant regime. Figure 3 shows
a spectrum comparisons for the (1,0) (a) and (2,0) (b) reso-
nances in the tight-binding regime (V0 = 20Er). The excel-
lent agreement between the exact and the model Hamiltonian
results demonstrate the validity of the effective Hamiltonian.

The s-s and s-p orbital symmetry of the coupling can be
experimentally probed by analyzing the quasimomentum de-
pendence of the molecules fraction after a magnetic field ramp
through a lattice induce resonance. Initially dimers are formed
in excited bands, which can be achieved by populating atoms
in excited bands [16]. Then, interactions are tuned through a
lattice resonance, and finally, the dimer fraction is measured
as a function of the dimer quasimomentum. At the two-body
level, the final dimer fraction is well described by a Landau-
Zener probability exp(−δLZ) with a Landau-Zener parameter
δLZ ∝ |gβ(K)|2/|α| where α is the speed of the ramp. Thus,
the final molecule probability will be mainly affected at the
center (s-s) or the edges (s-p) of the BZ depending on the
symmetry of the coupling.

Our predictions on the general structure of the atom-dimer
coupling are based only on symmetry properties of the atom
and dimer Wannier functions and can be easily extended to
multi-component and higher dimensional systems. The struc-
ture of the lattice induce resonances in higher dimension
would be determined by the dimer symmetry in each lattice
axis direction. Thus, we expect a rich variety of physical phe-
nomena when the system is close to a lattice-induced reso-
nance, that extends to higher dimensions.
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