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In the standard δf theory of neoclassical transport [F. Hinton and R. Hazeltine, Rev. Mod. Phys.
48, 239 (1976)], the zeroth-order (Maxwellian) solution is obtained analytically via the solution of
a nonlinear equation. The first-order correction, δf , is subsequently computed as the solution of a
linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This
equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-
Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical
codes have appeared which attempt to compute the total distribution, f , more accurately than
in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while
simultaneously reusing some form of the linearized collision operator. In this work we show that
higher-order corrections to the distribution function may be unphysical if collisional nonlinearities
are ignored.

PACS numbers: 52.25.Dg,52.25.Fi, 52.65.-y,52.25.Vy

While neoclassical transport is generally subdominant
to drift-wave-driven turbulent transport in the tokamak
core, neoclassical transport can become important in the
H-mode edge transport barrier region and in internal
transport barriers, where turbulence is suppressed, and in
the near axis-region, where the temperature and density
gradients become small. In both cases, nonlocal effects,
which are not retained in the standard theory [1], are be-
lieved to play an important role in the transport dynam-
ics. Specifically, in a transport barrier, the characteris-
tic short temperature and density gradient length scales
can be comparable to the ion poloidal gyro-radius, while
near the magnetic axis, trapped particles follow potato
orbits, for which the orbit width becomes comparable to
or larger than the minor radius. Over the last decade
there have been attempts to use direct numerical simula-
tion to describe nonlocal and other effects [2]. Numerical
codes (of both the gyrokinetic [3] and neoclassical [4, 5]
type) have appeared with the aim of computing a more
accurate solution than that described by the standard
δf model [6]. While there are advanced analytic treat-
ments relevant to, for example, the plasma flow in the
H-mode pedestal [7] as well as the gyrokinetic treatment
of toroidal angular momentum transport [8], no consen-
sus regarding a suitable systematic formalism appropri-
ate for numerical simulation has emerged. In fact, the
numerical simulations may sometimes ignore key terms
that are retained in the analytic theories. Although there
is not, at this time, a standard generalization of the local
theory relevant for numerical simulation, a representative
starting point in the neoclassical limit is the well-known
Hazeltine equation [9] for the total ion distribution, f :

df

dt
+ vg · ∇f + µ̇

∂f

∂µ
= C(f, f) . (1)

Above, vg is the general guiding-center velocity which
includes both perpendicular and parallel drifts. The
gradient is taken at constant total energy E = v2/2 +

zieΦ0/mi. In these expressions, C is the nonlinear
Fokker-Planck collision operator, v is the particle veloc-
ity, Φ0 is the equilibrium-scale electrostatic potential, zi
is the ion charge, and mi is the mass of the primary
ion species. There appears to be a tacit consensus that
Eq. (1) forms a sufficiently accurate model for nonlocal
dynamics because it includes so-called finite-orbit effects
through the advective term vg ·∇f [10, 11]. And, impor-
tantly, the left-hand side of Eq. (1) was shown by Hinton
[12] to be exactly conservative – insofar as it can be trans-
formed to an exact phase-space gradient. This feature is
often considered advantageous for numerical simulation.
On the other hand, the complexity of the full nonlinear
collision operator in Eq. (1) is such that all existing re-
search groups take a pragmatic approach and replace it
with some model form of the linearized operator CL(f).
Indeed, even the test-particle part of CL is so complicated
that the numerical codes referred to above implement it
in model [13], rather than exact [14] form.

Calculations by Simakov and Catto [15] in the limit of
short mean-free-path, however, show that corrections to
the Hazeltine equation (which is valid to all orders in the
poloidal gyroradius, ρip) appear at second-order in the
ion gyroradius, ρi. Even so, the Simakov model has not
been the focus of any simulation work. Presumably, this
has happened because full-f research attempts to extend
the accuracy of local calculations to include higher-order
poloidal gyroradius corrections. In this regime, poloidal
ion gyroradius over scale-length deviations from a local
Maxwellian equilibrium are possible. However, if accu-
rate corrections to the local theory are of interest, then
the common practice of linearizing C is incorrect. It is
the repercussions of using only a linearized collision op-
erator in the Hazeltine model that is the focus of the
remainder of this work. Coupling to electrons and impu-
rities is ignored to focus on the nonlinear effect of con-
cern.

Perturbative hierarchy: The Hazeltine equation
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for the total f is intractable in toroidal geometry. Still,
asymptotic consistency requires that as ρip/a → 0, the
exact solution f must satisfy

f − f0 − f1 − . . .− fN → 0 , (2)

where fN is the N th term in the expansion of f in powers
of ρip/a. By considering the steady-state limit, and un-
der the further simplifying assumption that the potential
Φ = Φ0(r) is a flux-function [18], a series expansion in
powers of ρip/a yields the hierarchy

v‖b · ∇f0 − C (f0, f0) = 0 , (3)

v‖b · ∇f1 − CL(f1) = Lvf0 , (4)

v‖b · ∇f2 − CL(f2)− C(f1, f1) = Lvf1 , (5)

where Lv is the differential operator

Lv
.
= −vD · ∇+ v

(0)
E · ∇+

zie

mi
vD · ∇Φ0

∂

∂ε
− µ̇

∂

∂µ
. (6)

In contrast to Eq. (1), we have evaluated gradients at
constant kinetic energy ε = v2/2. To keep the details
as simple as possible, we use the low-β approximation,
(a/B2)|dp/dr| ≪ 1, to write [16]

v
(0)
E · ∇θ =

I

ψ′

c

JψB2
Φ′

0 , (7)

vD · ∇r = −
I

ψ′

v2‖ + µB

ΩB

1

JψB

∂B

∂θ
, (8)

vD · ∇θ =
I

ψ′

v2‖ + µB

ΩB

1

JψB

∂B

∂r
−
I ′

ψ′

µB

ΩB

1

Jψ
, (9)

v‖b · ∇θ =
v‖

JψB
, (10)

µ̇ = −µvD · ∇r
I ′

I
(11)

Above, µ is the magnetic moment, Ω = zieB/(mic) is the
ion cyclotron frequency, ψ is the poloidal flux divided by
2π, b = B/B,

B = ∇ϕ×∇ψ + I∇ϕ , (12)

and Jψ = (∇ψ ×∇θ · ∇ϕ)−1. C is the like-species (non-
linear) collision operator, which can be written in Landau
[17] form as

C(f, g) = −Lii×

∂

∂vk

∫

d3v′ Ukl

[

f(v)
∂g(v′)

∂v′l
− g(v′)

∂f(v)

∂vl

]

(13)

where Ukl
.
=
(

u2δkl − ukul
)

/u3, uk
.
= vk − v′k and Lii =

4πz2i e
4 ln Λ/m2

i . In Eqs. (4) and (5), CL(g) = C(g, f0) +
C(f0, g) is the linearized collision operator. Noting that
Uklul = 0, it is easy to show directly from Eq. (13) that
C(f0, f0) = 0, where f0 is a local Maxwellian:

f0 =
n(r)

[2πT (r)/mi]
3/2

e−miε/T (r) . (14)

By inspection, it is clear that the solution of Eq. (3) is
also a Maxwellian. Proceeding to Eq. (4) for the first-
order distribution f1, we insert the solution for f0 to
obtain

v‖b ·∇f1−CL(f1) = vD ·∇r

[

−
∂f0
∂r

−
e

T

∂Φ0

∂r
f0

]

. (15)

This equation represents the standard model for neoclas-
sical transport and cannot be solved analytically in the
general case.
Exact solution for f1: An important limit, for which

an exact first-order solution exists, is the case of a single
ion species with uniform temperature. By noting the
identity

vD · ∇r =
I

ψ′
v‖b · ∇

(v‖
Ω

)

, (16)

and assuming zero temperature gradient, we can reduce
Eq. (15) to

v‖b · ∇f1 − CL(f1) = v‖b · ∇
(v‖

Ω

)

F (r, ε) , (17)

where

F (r, ε)
.
= −

I

ψ′

(

d lnn

dr
+
zieΦ

′
0

T

)

f0 . (18)

The solution of this equation is simply the first-order part
of the low-flow drifting Maxwellian,

f1 =
(v‖

Ω

)

F (r, ε) . (19)

To obtain this result we have used CL(f0v‖) = 0, which
reflects momentum conservation. While the first-order
solution is independent of the collisional regime, the
higher-order solutions are not.
Asymptotic solution for f2: Some algebra shows

that Eq. (5) reduces exactly to the following relatively
compact inhomogeneous equation for f2:

v‖b · ∇
(

f2 − f̃2

)

= CL(f2) + C(f1, f1) , (20)

where

f̃2 = −
1

2

(v‖

Ω

)2

G(r, ε) . (21)

Here, G is the profile function

G(r, ε) =
I

ψ′

(

∂F

∂r
+
zieΦ

′
0

T
F

)

. (22)

The function G will appear as a driving term in the so-
lution in all collisional regimes, the banana and Pfirsch-
Schlüter regimes in particular. The (perturbative) non-
local character of the solution is evident in the second
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derivatives appearing in G. To obtain the solution in the
limit Lii → 0, we see by inspection that

f2 − f̃2 = g2(ε, µ, σ, r) +O(Lii) , (23)

where g2 is an integration constant which is determined
by the appropriate solvability condition. Although g2 is
independent of the poloidal angle, θ, it may in principle
depend on the sign of velocity, σ = |v‖|/v‖.
Solvability with linear collisions: First we exam-

ine the case for which only the linearized collision opera-
tor, CL, is retained. Then, the solvability condition takes
the form

∮

dθ

v‖
JψBCL(f2) = 0 . (24)

We can write this symbolically as
〈

B

v‖
CL(f2)

〉

= 0 , (25)

where the angle brackets denote a flux-surface average.
Solvability with nonlinear collisions: On the

other hand, if the nonlinear collision operator is properly
accounted for, then the solvability condition takes the
form

〈

B

v‖
(CL(f2) + C(f1, f1))

〉

= 0 . (26)

At this point, we note the identity

C(f0vk, f0vk) = −
1

2
CL(v

2
kf0) , (27)

which can be proved directly from the Landau form of
the like-particle operator, Eq. (13). Remarkably, this
allows us to express the nonlinear solvability condition
completely in terms of the linearized operator

〈

B

v‖
CL

(

f2 −
1

2

v2‖
Ω2

F 2

f0

)〉

= 0 . (28)

Symbolic solution: The solution of an equation of
the form

〈

B

v‖
CL [g(ε, µ, σ, r)− Λ(ε, µ, σ, r, θ)]

〉

= 0 (29)

can be written as g(ε, µ, σ, r) = Λ, where the overbar de-
notes a linear transformation which corresponds roughly
to a flux-surface average. More precisely, we refer to Λ as
the collisional average of Λ. Computing this transform
exactly is analytically intractable in the general case.
Still, using this notation, the solutions fL

2 of Eq. (25)
and fNL

2 of Eq. (28) can be written

fL
2 =

1

2

(v‖

Ω

)2

G−
1

2

(v‖

Ω

)2

G , (30)

fNL
2 =

1

2

(v‖

Ω

)2

G−
1

2

(v‖

Ω

)2

G+
1

2

(v‖

Ω

)2 F 2

f0
.(31)

Physically, the two solutions are quite distinct. While
the collisional average of fL

2 is zero, the solution includ-
ing the collisional nonlinearity, fNL

2 , contains a signifi-
cant contribution from C(f1, f1) which does not vanish
on collisional average. For clarity, we emphasize that the
solutions above apply only to the special case of uniform
temperature.
Physical interpretation: Some insight into the

differing solutions can be obtained by examining more
closely the form of the function g2.

gNL
2 =

1

2

(v‖
Ω

)2
(

G+
F 2

f0

)

(32)

=
1

2

(v‖

Ω

)2

f0
zie

cTi

I

ψ′

∂

∂r
〈U‖B〉 , (33)

which shows that only the shear in the parallel ve-
locity, 〈U‖B〉 = −(cT/ezi)(I/ψ

′) (d lnn/dr + zieΦ
′
0/T ),

acts as a drive. Indeed, because of the Galilean invari-
ance of the nonlinear collision operator, a rigidly rotating
Maxwellian cannot act as a neoclassical drive. However,
if C is approximated by CL, exactly such an unphys-
ical drive will occur. We also remark that in the ab-
sence of parallel velocity shear, the solution reduces to
fNL
2 = (miv‖〈U‖B〉/BT )2/2, which is just the second-
order part of a drifting Maxwellian in the low-flow order-
ing.
Banana-regime example: We can give the calcula-

tion a more intuitive flavor by carrying out the averaging
operation explicitly in the banana regime using the model
Kovrizhnikh operator. When acting on an even function
of σ, the Kovrizhnikh operator reduces to the pitch-angle
scattering (Lorentz) operator

CL ∼
B

B0

v‖

ε

∂

∂λ
λv‖

∂

∂λ
, (34)

with λ = µB0/ε, v‖ =
√

2ε(1− λB/B0), such that B0 is
the on-axis magnetic field strength. Some algebra then
shows that the solvability condition in the case of the
linear operator is

∂

∂λ

[

−
∂

∂λ

〈

1

3

v3‖

Ω2

〉

G+ λ〈v‖〉
∂gL2
∂λ

]

= 0 , (35)

or equivalently,

∂gL2
∂λ

=
1

〈v‖〉

∂

∂λ

〈

1

3

v3‖

Ω2

〉

G , (36)

It is difficult to obtain a useful closed-form solution to
this equation in the general case, and so we take the
subsidiary limit ǫ→ 0, in which case it can be shown,

∂gL2
∂λ

∼ −
ε

Ω2
0

G

(

1 + ǫ

∮

dθJψ cos θ
√

1− λB/B0
∮

dθJψ
√

1− λB/B0

)

.

(37)
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Here, Ω0 = zieB0/(mic) is the on-axis cyclotron fre-
quency, ǫ = r/R0 is the inverse aspect ratio, and R0

is the plasma major radius. Thus, neglecting terms of
order ǫ3/2, we can perform the λ integration directly to
show gL2 ∼ −

(

λε/Ω2
0

)

G + c(ε, r), where c is an integra-
tion constant. By choosing the flux-surface average of
the density moment to be zero, we can eliminate c to
find

fL
2 ∼

(−2ε+ µB0)

Ω2
0

Gǫ cos θ . (38)

The accuracy of this result has been verified numerically
with the NEO code [16]. We note in passing that a simi-
lar result is obtained in the Pfirsch-Schlüter regime even
though the details of the calculation are quite different.
The similarity, ultimately, arises from properties of the
general solvability condition (see Eq. (96) in Ref. [16]),
which invariably removes a weighted θ-average of the in-
homogeneous terms.
Next, the same formal procedure, when applied to the

case of the full nonlinear operator, gives the significantly
different result

fNL
2 ∼

(−2ε+ µB0)

Ω2
0

Gǫ cos θ +

(

2
3ε− µB0

)

Ω2
0

F 2

f0
. (39)

This approximate result confirms the speculation made
about the general case, namely that the contribution
from the linear operator vanishes on the appropriate aver-
age, which in the banana regime is simply an unweighted
θ-average. Also, in the banana regime, the linear contri-
bution is O(ǫ) smaller than the nonlinear one.
Summary: The implication is that if one attempts

to improve upon standard neoclassical theory by retain-
ing second or higher order poloidal ion gyroradius ef-
fects, a spurious solution will be obtained if the lin-
earized collision operator is used. We have shown ex-
plicitly that in the banana regime, the collisional contri-
bution to the second-order solution is correctly given only
when C(f1, f1) is retained. Indeed, new analytic gyroki-
netic formulations already exist for which this term is in-
cluded [8]. Therefore, in general, nonlinear corrections to
the collision operator must be accurately retained in full-
f and hybrid fluid+δf numerical simulations in order to
avoid the type of spurious solution we have demonstrated
in this letter.
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