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We present a method for optimization of the technique of adiabatic passage between two quantum
states by composite sequences of frequency-chirped pulses with specific relative phases: composite
adiabatic passage (CAP). By choosing the composite phases appropriately the nonadiabatic losses
can be canceled to any desired order with sufficiently long sequences, regardless of the nonadiabatic
coupling. The values of the composite phases are universal for they do not depend on the pulse
shapes and the chirp. The accuracy of the CAP technique and its robustness against parameter
variations make CAP suitable for high-fidelity quantum information processing.
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Introduction. Adiabatic passage (AP) techniques are
a popular tool for coherent control of quantum systems
due to their simplicity and insensitivity to variations in
experimental parameters [1]. During adiabatic evolution,
the system follows an eigenstate of the Hamiltonian —
adiabatic (dressed) state. If the Hamiltonian is time-
dependent this adiabatic state can be made to connect
different diabatic (bare) states, and thereby produce pop-
ulation transfer. A variety of adiabatic techniques have
been proposed and demonstrated, including rapid adia-
batic passage [2], Stark-chirped rapid adiabatic passage
[3], retroreflection-induced bichromatic adiabatic passage
[4], superadiabatic passage [5], piecewise adiabatic pas-
sage [6], stimulated Raman adiabatic passage and its
variations [7]. In rapid adiabatic passage, which is the
oldest and simplest member of this family, the transi-
tion frequency of the two-state system and the carrier
frequency of the driving external coherent field cross at
some instant of time. A level crossing is created either
by variation of the transition frequency (e.g. by Zeeman
or Stark shifts) or by variation of the field frequency (e.g.
by frequency chirping). This energy crossing, combined
with adiabatic evolution, leads to population transfer be-
tween the two quantum states.

In nearly all AP techniques the population transfer is
incomplete, with efficiency close to, but less than 1. In
the traditional branches of quantum physics a fidelity of
90-95% usually suffices. However, in quantum informa-
tion processing a much higher fidelity is needed, with
an admissible error at most 10−4 [8]. Several methods
for optimization of AP have been proposed, e.g., with
fields that produce parallel eigenenergies [9], or addi-
tional fields that cancel the nonadiabatic coupling [10].

In this Letter, we propose a method for optimization of
AP, which uses composite pulse sequences — composite
adiabatic passage (CAP) — in which the single pulse
driving the quantum transition is replaced by a sequence
of pulses with well-defined relative phases. A suitable
choice of these phases allows various imperfections in the
inversion profile to be compensated to any desired order,

without even knowing the magnitude of the errors.

Composite pulses. Composite pulses, which gener-
alize the concept of spin echo [11], have been invented in
nuclear magnetic resonance (NMR) [12]. The available
methods for construction of composite pulses use the in-
tuitive notion of geometric rotations in the Bloch vector
picture and they are applicable to pulses of rectangu-
lar temporal shape and constant detuning. Such shapes
are adequate in NMR [12] and in atomic excitation with
microsecond laser pulses [13], but cannot be used for
pulses of smooth shapes and/or time-dependent detun-
ing. Recently, an SU(2) algebraic approach has been de-
veloped for the design of composite sequences of pulses
with smooth temporal shapes and constant detuning [14].
Here we use this approach to construct composite pulses
with chirped detuning, which allows us to optimize adia-
batic passage through a level crossing.

A two-state quantum system driven by an external co-
herent field is described by the Schrödinger equation,

i~∂tc(t) = H(t)c(t), (1)

where c(t) = [c1(t), c2(t)]
T is a vector-column with the

probability amplitudes of the two states |ψ1〉 and |ψ2〉.
The Hamiltonian after the rotating wave approximation
[15] is H(t) = (~/2)Ω(t) e− iD(t)|ψ1〉〈ψ2|+h.c., with D =
∫ t

0
∆(t′)dt′, where ∆ = ω0 − ω is the detuning between

the field frequency ω and the Bohr transition frequency
ω0, and Ω(t) is the Rabi frequency, which quantifies the
field-system interaction. The evolution of the quantum
system is described by the propagatorU, which connects
the probability amplitudes at time t to their initial values
at time ti: c(t) = U(t, ti)c(ti). It is parameterized by the
Cayley-Klein parameters a and b,

U =

[

a b
−b∗ a∗

]

. (2)

The transition probability is p = |b|2 = 1 − |a|2. A con-
stant phase shift φ in the driving field, Ω(t) → Ω(t) e iφ,



2

is mapped onto the propagator as

Uφ =

[

a b e− iφ

−b∗ e iφ a∗

]

. (3)

For experimental convenience, it is preferable to take all
constituent pulses the same, with the same shape, width,
peak Rabi frequency, detuning and chirp, and leave only
their phases different. This restriction greatly simplifies
the derivation; it is not, however, mandatory for the CAP
technique. A composite sequence of N identical pulses,
each with a phase φk, produces the overall propagator

U
(N) = UφN

UφN−1
· · ·Uφ2

Uφ1
. (4)

The composite phases φk (k = 1, 2, . . . , N) are control
parameters, which are fixed by requiring a specific exci-
tation profile. Because the overall phase does not affect
the excitation profile, one of these phases can be set to
zero. It is also convenient to have the “anagram” con-
dition Hk(t) = HN+1−k(t) (k = 1, 2, . . . , ⌊N/2⌋), which
leads to symmetric excitation profiles. For a compos-
ite sequence of 2n + 1 pulses, we find φ1 = φ2n+1 = 0
and we are left with n independent phases: φ2 = φ2n,
φ3 = φ2n−1, . . ., φn = φn+2, and φn+1. We note that if a
set of phases {φk}

n+1
k=2 is a solution to the control problem

then the set {−φk}
n+1
k=2 is also a solution. All phases are

determined with modulo 2π; hence the set {2π−φk}
n+1
k=2

is another solution.
Composite phases. We consider a model, in which

the Rabi frequency Ω(t) is an even function of time and
the detuning ∆(t) is odd,

Ω(t) = Ω(−t), ∆(t) = −∆(−t). (5)

Then the Cayley-Klein parameter a in the propagator
(2) is real, a ∈ R [16]. For a three-pulse sequence,
with phases (0, φ, 0), we find from Eq. (4) that

U
(3)
11 = a3 − a|b|2(1 + 2 cosφ). The choice φ = 2π/3

annuls the second term: U
(3)
11 = a3; then U

(3)
11 and

its first two derivatives vanish at the point where
a = 0, thereby making the excitation profile more
robust to variations in the pulse area around this
point. Because the dependence on φ factorizes in the

second term of U
(3)
11 , the composite phase φ = 2π/3

does not depend on Ω and ∆. For a sequence of five

pulses with phases (0, φ2, φ3, φ2, 0), we find U
(5)
11 =

a5 − 2a3|b|2 [1 + 2 cosφ2 + cos(φ2 − φ3) + cosφ3] +
a|b|4 [1 + 2 cos(φ2 − φ3) + 2 cos(2φ2 − φ3)]. Again, we
can choose the phases φ2 and φ3 such that they nullify

all but the first term: U
(5)
11 = a5. This corresponds to

nullifying U
(5)
11 and its first four derivatives in the point

where a = 0. One solution is (φ2 = 4π/5, φ3 = 2π/5).
This idea can be generalized for pulse sequences, con-

taining N = 2n + 1 pulses. In this case, choosing the

phases appropriately, we have U
(N)
11 = aN , which leads

to transition probability p = 1−a2N . Since for the model
(5) we have a ∈ [−1, 1], then p → 1 for N → ∞, except
for resonant even-π pulses, where a = ±1. In particular,
for a sequence of N resonant (∆ = 0) pulses, we obtain
p = 1 − cos(A/2)2N , which tends to 1 for large N re-
gardless of the pulse area A. We have derived a general
analytic formula for the phases of a composite sequence
of N pulses, which optimizes AP against variations in the
pulse area and the chirp rate,

φ
(N)
k =

(

N + 1− 2

⌊

k + 1

2

⌋)⌊

k

2

⌋

π

N
, (6)

where k = 1, 2, . . . , N and the symbol ⌊x⌋ denotes the
floor function (the integer part of x). These “magic”
phases can be used to produce an arbitrarily accurate
population inversion. The remarkable simplicity of the
analytic expression (6) for the composite phases may
have an underlying simple geometric interpretation.
Examples. The exactly soluble Demkov-Kunike (DK)

model [17] assumes a sech pulse shape and a tanh fre-
quency chirp added to a static detuning ∆0,

Ω(t) = Ω0 sech (t/T ), ∆(t) = ∆0 +B tanh(t/T ), (7)

where Ω0, ∆0 and B are constant parameters with the
dimension of frequency, and T is the pulse width. For
∆0 = 0 (no static detuning) the DK model reduces to
the Allen-Eberly (AE) model [18], which obeys the con-
ditions (5), while for B = 0 (no chirp) it reduces to the
Rosen-Zener model [19]. The Cayley-Klein parameter a
in the DK model is expressed by Gamma functions,

a =
Γ(ν)Γ(ν − λ− µ)

Γ(ν − λ)Γ(ν − µ)
, (8)

where λ =
√

α2 − β2 − iβ, µ = −
√

α2 − β2 − iβ, and
ν = 1

2 + i(δ − β), with α = Ω0T/2, β = BT/2 and
δ = ∆0T/2. The transition probability p = 1− |a|2 is

p = 1−
cosh(2πδ) + cos(2π

√

α2 − β2)

cosh(2πδ) + cosh(2πβ)
. (9)

A transition probability p = 1 is obtained for δ = 0
and

√

α2 − β2 = n + 1
2 , with n = 0, 1, 2, . . . The transi-

tion probability tends to unity also in the adiabatic limit
(α > |β| ≫ 1) for δ = 0. However, if the chirp β is not
large enough, nonadiabatic oscillations versus α appear
and the probability is reduced. These oscillations can be
suppressed to any order by composite pulses.
Figure 1 shows the dramatic improvement of adiabatic

passage with composite pulses. Frames (a) and (b) show
that a five-pulse CAP with sech-tanh shapes suffices to
suppress the nonadiabatic oscillations below the quantum
information benchmark 10−4. Frames (c) and (d) show
the optimization of AP for the experimentally more com-
mon situation of a Gaussian pulse with linear chirp, for
which only an approximate analytic solution is known
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FIG. 1: Transition probability vs. peak Rabi frequency for
a single pulse, and for N-pulse composite sequences (with N
denoted on the curves) with phases from Eq. (6), assuming
(a) sech-tanh pulses for chirp rate B = 1/T ; (c) Gaussian

pulses, Ω(t) = Ω0 e
−t2/T2

, with a linear chirp, ∆(t) = Ct,
with C = 2/T 2. Frames (b) and (d) show the infidelities of
the respective upper profiles. The dashed curve in frame (b)
is for pulse areas with a random error of 1% in the five-pulse
sequence. The dashed curve in frame (d) is for an asymmetric

pulse shape, Ω(t) = Ω0 e
−t2/T2

[1 + tanh(t/T )/20].

[20]; because conditions (5) are satisfied the composite
phases are given by Eq. (6). The reduction of the nona-
diabatic losses is not as high as for sech pulses because
Gaussian pulses are less adiabatic [20]; however, the 10−4

error benchmark can still be reached, albeit with longer
sequences. We point out that the composite phases (6)
are applicable to other pulse shapes and chirps with the
symmetry property (5), e.g. the Landau-Zener model
[21] in its finite version [22].

We note that the compensation of nonadiabatic losses
does not occur merely due to increased overall pulse area
of the composite sequence. For example, the fidelity of
the five-pulse CAP in Fig. 1 cannot be obtained with
a single sech-tanh pulse with a five times larger area.
Moreover, in an experiment it is often preferable, and
more feasible, to use a sequence of pulses with a smaller
area rather than a single pulse with a large area.

Another experimental issue are the conditions for equal
pulse areas and symmetric pulse shapes. We include in
Fig. 1(b) a curve with a 1% random error in the individ-
ual pulse areas; the infidelity remains close to the 10−4

benchmark. We further show in Fig. 1(d) a curve for
asymmetric pulse shapes; we see that a small (5%) asym-
metry does not affect the CAP technique significantly.
For larger asymmetry the composite phases can always
be calculated numerically; they may differ from the ones
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FIG. 2: Transition probability vs. peak Rabi frequency and
chirp rate for a single AE pulse (top) and for a five-pulse com-
posite sequence with phases (0, 4π/5, 2π/5, 4π/5, 0) (bottom).
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FIG. 3: Transition probability vs. time for a sequence of five

pulses with Gaussian pulse shape, Ωn(t) = Ω0 e
−(t−tn)2/T2

,
and linear chirp, ∆(t) = Ct, with Ω0 = 1.2/T and C = 1/T 2.

prescribed by us for symmetric pulses but the respective
sequences should perform equally well.

The fidelity of the CAP technique is further illustrated
in Fig. 2 versus Ω0 and the chirp rate B. CAP greatly
enhances the robustness of the transition probability
against variations of Ω0 and B and achieves ultra-high
fidelity even for moderate parameter values and small
number of constituent pulses.

The CAP technique must not be confused with the
technique of piecewise adiabatic passage (PAP) [6], which
also uses a sequence of phased pulses. PAP requires a
large number of pulses, each of which produces a pertur-
batively small change in the populations, whereas CAP
works for an arbitrary number of pulses and each pulse
produces a large population change. Moreover, PAP de-
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FIG. 4: (a) Transition probability vs. static detuning ∆0 for a
single sech-tanh pulse, Eq. (7), three- and five-pulse sequences
with phases (0, π/3, 0) and (0, π/6, 5π/3, π/6, 0), respectively.
The chirp rate is B = 1/T and Ω0 =

√

2/T . (b) Infidelity of
the profiles from frame (a).

mands phases that change quadratically from pulse to
pulse, which translate into a linear chirp for a large num-
ber of pulses; the population evolution is a piecewise ver-
sion of the one for standard single-pulse AP. In CAP
the composite phases are derived from the condition to
cancel the deviations from unit transfer efficiency due to
nonadiabatic effects by enforcing destructive interference
of these deviations. Figure 3 shows an example of pop-
ulation evolution during CAP, in which each constituent
pulse produces a large population change but not com-
plete inversion; the destructive interference of the devia-
tions drives the system to complete inversion in the end.
Hitherto we have used the CAP technique to stabilize

the transfer efficiency against variations in the pulse area
and the chirp rate. The CAP technique can also optimize
the excitation with respect to the static detuning ∆0.
To this end, we take the expansion of the propagator
versus ∆0 around the point ∆0 = 0 and choose again the
composite phases such that the first few derivatives of

U
(N)
11 vanish. Figure 4 illustrates the stabilization of the

transition probability versus ∆0 achieved with composite
sequences of three and five pulses. The width of the high-
fidelity range, with an error below the 10−4 benchmark,
increases from 0.02/T for a single pulse to 0.32/T for
three pulses and 0.75/T for five pulses.
Conclusions. The proposed CAP technique is a sim-

ple and efficient method for optimization of adiabatic
passage by using composite pulse sequences. It allows one
to suppress the nonadiabatic oscillations in the transition
probability and to reduce the error below the 10−4 quan-
tum computation benchmark, even with simple three-

and five-pulse composite sequences. It is particularly im-
portant that the composite phases do not depend on
the specific pulse shape and chirp as long as the lat-
ter satisfy the symmetry property (5). These features
make the CAP technique a potentially important tool
for ultrahigh-fidelity quantum information processing.
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