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We construct four-dimensional covariant non-linear theories of massive gravity which are ghost-
free in the decoupling limit to all orders. These theories resum explicitly all the nonlinear terms
of an effective field theory of massive gravity. We show that away from the decoupling limit the
Hamiltonian constraint is maintained at least up to and including quartic order in non-linearities,
hence, excluding the possibility of the Boulware-Deser ghost up to this order. We also show that
the same remains true to all orders in a similar toy-model.

PACS numbers:

Introduction: Whether there exist a consistent ex-
tension of General Relativity (GR) by a mass term is a
basic question of a classical field theory. A small gravi-
ton mass could also be of a significant physical interest,
notably for the cosmological constant problem.

A ghost-free linear theory of massive spin-2 – the Fierz-
Pauli (FP) model [1] – had been notoriously hard to gen-
eralize to the nonlinear level [2]: in addition to the GR
momentum constraint, also the Hamiltonian constraint
gets lost in a typical massive theory; as a result, the
sixth degree of freedom – the Boulware-Deser (BD) ghost
– emerges as a mode propagating on otherwise physically
meaningful local backgrounds (e.g., on a background of a
lump of matter). This can be explicitly seen in the effec-
tive field theory (EFT) approach to massive gravity [3] in
the decoupling limit [3, 4], where the problem manifests
itself in the Lagrangian for the helicity-0 component of
the massive graviton. This Lagrangian generically con-
tains nonlinear terms with more than two time deriva-
tives. The latter give rise to the sixth degree of freedom
on local backgrounds, while in general, these terms lead
to the loss of well-posedness of the Cauchy problem for
the helicity-0 field theory [3, 4].

A step forward has been made recently in [5] where it
was shown that: (a) the coefficients of the EFT can be
chosen so that the decoupling limit Lagrangian is ghost-
free; this involves choosing the “appropriate coefficients”
order-by-order, and an algorithm was set for this proce-
dure to an arbitrary order; (b) once these coefficients are
chosen in the effective Lagrangian, only a few terms up
to the quartic order survive in the decoupling limit, all
the higher order terms vanish identically. Moreover, the
surviving terms are unique as their structure is fixed by
symmetries [5, 6]. The above results enable one to define
a classical EFT that is consistent in the decouplig limit
[5]. This theory was not considered in [2].

In the present work we build on the above findings,
and go far beyond them. In particular: (1) We construct
Lagrangians that automatically produce the “appropriate
coefficients” once expanded in powers of the fields; these

give rise to theories that are ghost-free automatically to
all orders in the decoupling limit. (2) Using the obtained
Lagrangians we study the issue of the BD ghost away
from the decoupling limit; we show that the appropri-
ately modified Hamiltonian constraint is maintained at
least up to and including quartic order, hence excluding
the possibility of the BD ghost up to this order. We also
discuss an analogous (1+1)-dimensional model and show
explicitly how the Hamiltonian constraint is preserved to
all orders.
To emphasize, the requirement that the theory be

ghost-free in the decoupling limit, leads to resummation
of an infinite number of terms of the classical EFT away
from the decoupling limit! Due to this resummation, it
becomes straightforward, but still technically involved,
to address a more ambitious question of the sixth mode
away from the decoupling limit [15].
Formalism: Define the tensor Hµν as the covarianti-

zation of the metric perturbation, gµν = ηµν + hµν =
Hµν + ηab∂µφ

a∂νφ
b, where the four Stückelberg fields φa

transform as scalars, and ηab = (−1, 1, 1, 1), [3]. The
helicity-0 mode π of the graviton can be extracted by
expressing φa = (xa − ηaµ∂µπ), such that

Hµν = hµν + 2Πµν − ηαβΠµαΠβν , Πµν ≡ ∂µ∂νπ. (1)

We may therefore define the following quantity

Kµ
ν (g,H) = δµν −

√

δµν −Hµ
ν = −

∞
∑

n=1

d̄n(H
n)µν , (2)

with d̄n =
(2n)!

(1− 2n)(n!)24n
. (3)

HereHµ
ν = gµαHαν , and (Hn)µν = Hµ

α1
Hα1

α2
· · ·Hαn−1

ν de-
notes the product of n tensors Hα

β . Below, unless stated
otherwise, all the contractions are made using the metric
gµν . The tensor Kµν = gµαKα

ν is defined in such a way
that

Kµν(g,H)
∣

∣

∣

hµν=0
≡ Πµν . (4)
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We use the same notation as in [4] where square brack-
ets [. . .] represent the trace of a tensor contracted us-
ing the Minkowski metric, e.g. [Π] = ηµνΠµν and
[Π2] = ηαβηµνΠαµΠβν , while angle brackets 〈. . .〉 rep-
resent the trace with respect to the physical metric gµν ,
so that 〈H〉 = gµνHµν and 〈H2〉 = gαβgµνHαµHβν .
We are first interested in the decoupling limit[16]. For

that, let us define the canonically normalized variables,
π̂ = Λ3

3π with Λ3
3 = m2MPl and ĥµν = MPlhµν . The

limit is then obtained by taking MPl → ∞ and m → 0
while keeping π̂, ĥµν , and the scale Λ3 fixed. First, we
construct an explicit example of a non-linear theory that
bears no ghosts in the decoupling limit, and then give
a general formulation and show the absence of the BD
ghost beyond the decoupling limit in quartic order.
Massive Gravity: The consistency of the FP term,

(h2 − h2
µν), relies on the fact that the Lagrangian

L(2)
der = [Π]2 − [Π2] , (5)

is a total derivative. To ensure that no ghost appears

in the decoupling limit, it is sufficient to extend L(2)
der co-

variantly away from hµν = 0, i.e. replace [Π] and [Π2] by
〈K〉 and 〈K2〉 respectively, so that the total Lagrangian
reads as

L =
M2

Pl

2

√
−g

(

R− m2

4
U(g,H)

)

, (6)

with the potential U expressed as an expansion in H as

U(g,H) = −4
(

〈K〉2 − 〈K2〉
)

(7)

= −4
(

∑

n≥1

d̄n〈Hn〉
)2 − 8

∑

n≥2

d̄n〈Hn〉 .

Expanding this expression to quintic order,

U(g,H) =
(

〈H2〉 − 〈H〉2
)

− 1

2

(

〈H〉〈H2〉 − 〈H3〉
)

(8)

− 1

16

(

〈H2〉2 + 4〈H〉〈H3〉 − 5〈H4〉
)

− 1

32

(

2〈H2〉〈H3〉+ 5〈H〉〈H4〉 − 7〈H5〉
)

+ · · · ,

we recover the decoupling limit presented in [5] with the
special indices c3 = d5 = f7 = 0.
The Lagrangian (6) with (7) can be obtained from the

Lagrangian with a finite number of terms

Lλ =
M2

Pl

2

√−g
(

R−m2(K2
µν −K2)

)

+
√−gλµν(gαβKµαKβν − 2Kµν +Hµν), (9)

where Kµν is an independent tensor field that gets related
to Hµν as in (2) due to the constraint enforced by the
Lagrange multiplier λµ

ν . Note, the expression (2) can

be rewritten as Kµ
ν = δµν −

√

∂µφa∂νφbηab, that gives a
square root structure in the full Lagrangian.

Decoupling limit: It is straightforward to notice that
the leading contribution to the decoupling limit

√
−g U(g,H)

∣

∣

∣

hµν=0
= −4

(

(�π)2 − (∂α∂βπ)
2
)

,(10)

is a total derivative. The resulting interaction La-
grangian in the decoupling limit is then given by [5]

Lint = ĥµνX̄
µν , (11)

with

X̄µν = −M2
Plm

2

8

δ

δhµν

(√−g U(g,H)
)

∣

∣

∣

hµν=0
. (12)

The expression for X̄ simplifies to

X̄µν =
1

2
Λ3
3

[

Πηµν −Πµν +Π2
µν −ΠΠµν (13)

+
1

2
(Π2 −Π2

αβ)ηµν

]

.

The tensor X̄µν is conserved and gives rise to at most
second order derivative terms in the equations of motion.
This tensor can be expressed as the product of two epsilon
tensors appropriately contracted with powers of Πµν [6].
For the potential (7), the Lagrangian in the decoupling
limit is then given by, see Ref. [5]

Llim
Λ3

= −1

2
ĥµν(Ê ĥ)µν + ĥµνX̄

µν , (14)

where Ê denotes the standard Einstein operator normal-
ized as in [5], and this result is exact (i.e. no higher order
corrections). Notice that this is also in agreement with
the results of [5] up to quintic order, for the special case
c3 = d5 = f7 = 0, but we explicitly demonstrate here
that this result remains valid to all orders.

General formulation: As mentioned in [5], at each
order in the expansion there exists a total derivative

L(n)
der(Π) = −

n
∑

m=1

(−1)m
(n− 1)!

(n−m)!
[Πm]L(n−m)

der (Π) , (15)

with L(0)
der(Π) = 1 and L(1)

der(Π) = [Π]. These total deriva-
tives generalize the “Fierz-Pauli” structure used previ-
ously to all orders; only the n ≤ 4 terms are nonzero
[5]. Then, the potential of any theory of massive gravity
with no ghosts in the decoupling limit can be expressed
non-linearly as

U(g,H) = −4
∑

n≥2

αn L(n)
der(K) , (16)

where [Πm] in (15) should be replaced by 〈Km〉 and ex-
pressed in terms of g and H using (2).
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Here again this specific structure ensures that the lead-
ing contribution to the decoupling limit is manifestly a
total derivative by construction,

√−g U(g,H)
∣

∣

∣

hµν=0
= total derivative , (17)

and the resulting interaction Lagrangian can be derived
by noticing the general relation

δ

δhµν
〈Kn〉

∣

∣

∣

hµν=0
=

n

2

(

Πn−1
µν −Πn

µν

)

, (18)

so that

δ

δhµν

(√−gL(n)
der(K)

) ∣

∣

∣

hµν=0
= (19)

n
∑

m=0

(−1)mn!

2(n−m)!

(

Πm
µν −Πm−1

µν

)

L(n−m)
der (Π) ,

using the notation Π0
µν = ηµν and Π−1

µν = 0. The de-
coupling limit Lagrangian is then given by (14) with the
same definition (12) for the tensor Xµν , giving here

X̄µν =
1

2
Λ3
3

∑

n≥2

αn

(

X(n)
µν + nX(n−1)

µν

)

, (20)

with X(n)
µν =

n
∑

m=0

(−1)m
n!

2(n−m)!
Πm

µνL
(n−m)
der (Π) . (21)

The special theory found in [7, 8] corresponds to the spe-
cific choices of coefficients α2 = 1 and α3 = −1/2, see
Ref. [10]. However we emphasize that the results in this
paper are now valid to all orders in nonlinearities.

Furthermore, at each order the tensors X
(n)
µν are

given by the recursive relation X
(n)
µν = −nΠ α

µ X
(n−1)
αν +

ΠαβX
(n−1)
αβ ηµν , with X

(0)
µν = 1/2ηµν. So since X

(4)
µν ≡ 0

all these tensors vanish beyond the quartic one, X
(n)
µν ≡ 0

for any n ≥ 4, and the decoupling limit therefore stops
at that order, as previously implied in [5].
The theory with (16) has a well-posed Cauchy problem

on arbitrary backgrounds (some of which could flip the
sign of the π kinetic term and be unstable [6]).

Boulware-Deser ghost: The previous argument en-
sures the absence of ghost in the decoupling limit, but it is
feasible that the ghost reappears beyond the decoupling
limit, and is simply suppressed by a mass scale larger
than Λ3. Certain arguments have hinted towards the ex-
istence of a BD ghost, [4]. We reanalyze the arguments
here and show the absence of ghosts within the regime
studied. To compute the Hamiltonian, we fix unitary
gauge for which π = 0, such that

〈Hn〉 =
∑

ℓ≥0

(−1)ℓCℓ+n−1
ℓ [hℓ+n], (22)

where the Cn
m are the Bernoulli coefficients. We also

focus on the case where α2 = 1 and αn = 0 for n ≥ 3.

Below, we work in terms of the ADM variables [11], g00 =
−N−2, g0i = Ni, and gij = γij , with the lapse N =
1+ δN , and the three-dimensional metric γij = δij +hij.
In terms of these variables, the potential is then of the
form

√−g U = A+ δNB +NiNj

[

− 2δij + Cij (23)

+δN(δij +Dij)− 1

2
δN2δij − 1

8
δijN2

k

]

,

where A,B, Cij and Dij are functions of hij , at least first
order in perturbations, and Cij+2Dij = − 1

2h
ij+O(h2

ij),
and in this section we raise and lower the space-like in-
dices using δij . Notice that this is in agreement with the
analysis performed in [4], and corresponds to setting the
coefficients in (43) of [4] to A = B = D = E = 0, while
C = −1/2. However, we emphasize here that the pres-
ence of the term CN2

i δN
2 does not signal the presence of

a ghost despite the fact that the equations for δN and Nj

naively appear to determine δN and Nj : To see this ex-
plicitly, one can solve the equation for Nj and substitute
the solution obtained order-by-order into the equation
for δN ; then, in the latter equation there is a cancelation
of the cubic order term containing δN . Hence, to that
order δN disappears from that equation which ends up
being a constraint for hij ! The cancelation of δN and
the resulting constraint is a consequence of the no-ghost
condition in the decoupling limit.
The existence of the constraint can be shown more di-

rectly in the Hamiltonian formalism in the quartic order
(corresponding to the cubic order in the equations) by
using a redefined shift ni,

Nj =

(

δij +
1

2
δNδij −

1

8
δNhi

j

)

ni ≡ Li
jni , (24)

then, the Hamiltonian is of the form

H =
M2

Pl

2

√
γ
(

NR0 +NjR
j
)

+
m2M2

Pl

8
(A+ BδN) (25)

−m2M2
Pl

4
Lij

(

ninj −
1

2
Ck
i njnk +

1

16
n2
kninj

)

,

up to quartic order in the metric perturbations. One can
check that the variation of the Hamiltonian (25) w.r.t.
the shift ni gives an equation which is independent of
N , and serves to determine nj . Moreover, the lapse re-
mains a Lagrange multiplier even after integration over
the shift, hence giving rise to a Hamiltonian constraint
on the physical variables. Whether this constraint gives
rise to a secondary constraint, and whether the system
should be quantized as a first- or second class system, is a
separate interesting question. The mere existence of the
Hamiltonian constraint is sufficient to claim the absence
of the BD ghost to that order [17]. This remains true
in the presence of sources coupled covariantly to gµν ; the
redefinition (24) does not involve the canonical momenta,
and does not lead to any complications.
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The Hamiltonian evaluated on the constraint surface
is proportional to m2 and whether or not it is positive
semi-definite is determined by A,B, Cij and Dij . Thus,
in general certain backgrounds could have slow tachyon-
like instabilities, however, this is a separate issue from
that of the BD ghost that we clarified above.
(1 + 1)-d massive gravity: Proving the absence of

the BD ghost in complete generality beyond the quartic
order is a grand task, which we save for a separate study.
However, we can analyze here a similar issue in a (1+1)-d
toy-model, where we consider the Hamiltonian

H =
√
γ

[

NR0 + γ11N1R1 +
m2

4
NU(g,H)

]

, (26)

with R0 and R1 arbitrary functions of the space-like met-
ric γ11 and its conjugate momentum, and the potential
U is given in (7). In 1+1 dimensions, it is relatively easy
to check that the Hamiltonian then takes the exact form

H =
√
γ
[

NR0 + γ11N1R1 − 2m2N
]

(27)

−2m2

(

1−
√

(
√
γ +N)2 − γ11N2

1

)

,

and seemingly includes terms quadratic in the lapse when
working at quartic order and beyond,

H ∼ H0 +H1N +m2N2
1N

2 + · · · . (28)

By stopping the analysis at this point one would infer
that the lapse no longer enforces a constraint. However,
in terms of the redefined shift n1, N1 = n1

(

γ11 +N
√
γ
)

,
the Hamiltonian takes the much more pleasant form

H =
√
γNR0 − 2m2 (1 +

√
γN) (29)

+ (
√
γ +N)

(

n1R1 + 2m2
√

1− n2
1

)

,

which remains linear in the lapse, even after integration
over the shift. It is again straightforward to see that
the lapse does enforce a constraint, and does so for an
“arbitrary background”.
Outlook: We have given a covariant non-linear real-

ization of massive gravity in 4D which: (1) is automati-
cally free of ghosts in the decoupling limit, to all orders
in non-linearities; (2) keeps the lapse as a Lagrange mul-
tiplier away from the decoupling limit, at least up to
quartic order in non-linearities. These findings consti-
tute what we believe is a very significant step forward,
and strongly suggests the existence of an entirely ghost-
free classical theory of massive gravity. However, to prove
this statement in complete generality, two important in-
gredients are yet missing: (a) proving that the lapse re-
mains a Lagrange multiplier to all orders; (b) checking
whether the secondary constraint is generated or not, and
whether the theory could be canonically quantized as a
first or second class system. For the consistency of the

theory at the quantum loop level one would have to es-
tablish the existence of a symmetry which protects this
theory against quantum corrections that could revive the
ghost. These points will be explored in a further study.
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