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Sharp quantum phase transitions typically require a large system with many particles. Here we
show that for a frustrated fully-connected Ising spin network represented by trapped atomic ions,
the competition between different spin orders leads to rich phase transitions whose sharpness scales
exponentially with the number of spins. This unusual finite-size scaling behavior opens up the
possibility of observing sharp quantum phase transitions in a system of just a few trapped ion spins.
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Quantum simulators are motivated by the promise of
gaining insight into many-body quantum systems such
as high-TC superconductors or complex arrangements of
interacting spins. Cold atomic systems form a promising
platform for quantum simulation, as the interactions be-
tween particles can be under great control. A good exam-
ple is a collection of trapped and laser-cooled atomic ions,
each representing an effective spin that can be made to in-
teract with all the others by modulating the Coulomb in-
teraction between ions. By applying spin-dependent op-
tical dipole forces it has been shown that a crystal of ions
provides an ideal platform to simulate intractable inter-
acting spin models [1, 2]. Following this proposal, recent
experiments have simulated quantum magnetism with a
few ions [3–6]. For three or more ions, the long-range cou-
pling between the spins can provide frustrated interac-
tion patterns or competition between various spin orders
and offer an exceptional opportunity to study quantum
phases and transitions [5, 6]. A quantum phase transi-
tion is defined as a singular change of the ground state
energy as one continuously varies a control parameter in
the Hamiltonian, characterized by a level crossing or an
avoid level crossing that approaches a singularity as the
system size increases [7]. The observation of a quantum
phase transition typically requires a large system with
many particles, as the width (sharpness) of a quantum
phase transition usually scales with 1/N , the inverse of
the number of particles [7]. With such slow finite-size
scaling laws, small networks of trapped ions realized in
current experiments (N . 20) are not expected to exhibit
sharp transitions between distinct quantum phases.

In this paper, we show the surprising result that sharp
phase transitions can indeed be observed with just a few
atomic ions. This is due to unusual finite size scaling
laws in this frustrated spin network, where the sharpness
of some phase transitions scales exponentially instead of
linearly with 1/N . By controlling a single experimen-
tal parameter that determines the pattern of spin-spin
couplings between the ions, we show that the expected
ground state emerges from a delicate compromise be-
tween the couplings. Frustration in the spin network
leads to a variety of spin orders, with the number of dis-
tinct phases increasing rapidly with the number of ions.

We construct the complete phase diagram for small spin
networks realizable with the current technology. The
sharp phase transition is characterized in detail with an
explanation of its unusual finite-size scaling behavior.

We consider a small crystal of ions confined in a
one-dimensional harmonic trap. The spin states of the
ions are represented by two internal states, referred as
|↑〉 and |↓〉, and the effective spin-spin interaction be-
tween the ions is induced with off-resonant bichromatic
laser beams [1, 3–5]. The ion-laser coupling Hamilto-
nian, written in the rotating frame, has the form H =
∑

n [~Ωcos(δkxn + µt)σz
n +Bσx

n] [8], where Ω is a Ra-
man Rabi frequency, δk is the wave vector difference be-
tween the two Raman beams (which is assumed to be
along the radial direction x̂), µ is the beatnote or detun-
ing between the two laser beams, σz

n and σx
n are Pauli ma-

trices describing the spin of the nth ion, and B is an effec-
tive magnetic field induced by radiation that coherently
flips the spins. In the rotating frame, the radial coordi-
nate xn is expanded in terms of the transverse phonon

modes ak as xn =
∑

k b
k
n

√

~/(2mωk)(a
†
ke

iωkt+ake
−iωkt),

where m is the atomic mass, ωk is the eigenfrequency of
the kth normal mode of the ion crystal, and bkn is the
eigenmode transformation matrix. We use transverse
phonon modes because they can more easily be scaled
up to large systems [5, 9]. Under the Lamb-Dicke crite-

rion ηn,k ≡ bknδk
√

~/(2mωk) ≪ 1, the Hamiltonian H

is simplified to H = −~Ω
∑

nk ηn,k sin (µt)σ
z
n(a

†
ke

iωkt +
ake

−iωkt) +B
∑

n σ
x
n.

If we assume that the laser detuning µ is not resonant
with any phonon mode with the condition |ωk − µ| ≫
ηn,kΩ satisfied for all n modes k, the probability of ex-

citing any phonon mode
∣

∣Ωηn,kb
k
n/2 (ωk − µ)

∣

∣

2
is negligi-

ble. We can therefore adiabatically eliminate the phonon
modes and arrive at the following effective spin-spin cou-
pling Hamiltonian [6, 10]

Hs =
∑

m,n

Jmnσ
z
mσz

n +B
∑

n

σx
n, (1)

where the coefficients

Jmn =
(~Ωδk)2

2m

∑

k

bkmbkn
µ2 − ω2

k

. (2)
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Figure 1: (Color online) Illustration of spin orders in two
frustrated Ising networks with competing long-range inter-
action for N = 7 ions. Left panel : Ferromagnetic order
with detuning µ/ω⊥ = 0.9886; Right panel : Kink order with
µ/ω⊥ = 0.9900. The thickness of the edge in the graph
represents the strength of each coupling. Positive (antiferro-
magnetic) spin couplings are indicated in red, while negative
(ferromagnetic) couplings are indicated in black. (Through-
out this paper, we set the trap aspect ratio (transverse/axial)
ω⊥/ω‖ = 10 [4–6].)

This Ising Hamiltonian is a pillar of many-body
physics, and its properties have been exhaustively stud-
ied under various conditions [7]. For instance, the ground
state of the Ising Hamiltonian is well understood when
the coupling coefficients Jmn are uniform, or nonzero
only for nearest neighbors. However, here we have an
extended Ising network where the coupling coefficients
Jmn are inhomogeneous (both in magnitude and sign)
and extend over long range [11]. The strong competition
among these interaction terms (even with B = 0) will
generally lead to highly frustrated ground states where
individual bonds are compromised in order to reach a
global energy minimum. For arbitrary coupling coeffi-
cients Jmn, the determination of the ground state energy
of Hamiltonian (1) generally belongs to the complexity
class of NP-complete problems [12], meaning that calcu-
lating attributes of the system becomes intractable when
the system size is scaled up.

We consider the case where the coupling coefficients
Jmn are controlled by a single experimental parameter,
the laser detuning µ [4–6]. To determine Jmn from de-
tuning µ with the formula (2), we need the normal mode
eigenfunction bkn. This is obtained by finding the equi-
librium positions for a given number of ions in a har-
monic trap and then diagonalizing the Coulomb interac-
tion Hamiltonian expanded around the ions’ equilibrium
positions. With a single control parameter µ, we are
not able to program arbitrary coupling coefficients Jmn.
However, the interaction pattern is sufficiently complex
to allow frustrated ground state configurations and rich
phase transitions. To illustrate this, we show in Fig. 1a
coupling pattern for N = 7 ions and its associated ground
state spin configuration at B = 0. The coupling pattern
is represented by a graph where the color and the thick-
ness of each edge represents respectively the sign (fer-
romagnetic or antiferromagnetic) and the magnitude of
the coupling. In Fig. 1a, we find a ferromagnetically or-
dered ground state with all the spins pointing to the same
direction. However, in this ferromagnetic state, some of

the bonds, such as the strong antiferromagnetic bond be-
tween the ions 1 and 7, are compromised, and due to this
frustration, the ground-state spin configuration is very
sensitive to the strength of the coupling. If we adjust the
detuning µ by a small fraction of the trap frequency, the
ferromagnetic bonds of the ion pairs (1, 5) and (3, 7) are
slightly weakened (see Fig. 1b) and the antiferromag-
netic bond (1, 7) dominates and flips the spin direction
of the entire left (or right) half of the ion crystal. This is
a phase transition from ferromagnetic order to a “kink”
order, with a kink in the spin direction between the 4th
and 5th ions counting from either the left or the right
side.

To show the rich phase diagram for this system, in Fig.
2a we list all different spin phases at B = 0 for a small
Ising network with 3, 5, 7 and 9 ions obtained through
exact diagonalization of the Hamiltonian while tuning up
the detuning µ. For an odd number of ions, the phase di-
agram is more interesting and features a larger variety of
spin orders, because the left-right reflection symmetry in
a linear ion crystal can be spontaneously broken. Each
phase is characterized by a spin order (denoted with a
binary string where 0 and 1 correspond to ↑ and ↓ spin
respectively) which gives one of the ground state spin
configurations. The Ising Hamiltonian (1) features a re-
flection symmetry and an intrinsic Z2 symmetry with re-
spect to a global spin flip. The spin order breaks the Ising
symmetry, so each phase is at least two-fold degenerate.
If the spin order also breaks the reflection symmetry, the
corresponding ground state is 4-fold degenerate. For in-
stance, for the phase denoted by the spin order 01001,
the four degenerate ground states are

∣

∣↓↑↓↓↑
〉

,
∣

∣↑↓↑↑↓
〉

,
∣

∣↑↓↓↑↓
〉

, and
∣

∣↓↑↑↓↑
〉

. When µ is tuned crossing a phonon
mode (numbers in parentheses in Fig. 2a), the spin or-
der changes as expected, but this is not a conventional
phase transition as the parameters Jmn change discontin-
uously in the Hamiltonian (1). However, when µ varies
within two phonon modes, all the parameters Jmn are an-
alytic functions of µ, yet the spin order can still change
abruptly, signaling a phase transition. The frequency of
this type of inter-mode phase transition increases rapidly
with the ion number: there is one such transition for a
three-ion chain and 12 such transitions in a nine-ion crys-
tal. Another notable feature from Fig. 2a is that there is
typically no phase transition when µ varies from an even
mode (2nd, 4th, ..., phonon modes; counting from the
lowest phonon frequency) to an odd mode (3rd, 5th, ...).
In such regions, the spin order has a reflection symmetry.
This suggests that a spin order with reflection symmetry
may be more stable in energy and does not easily yield
to other spin configurations. This observation is consis-
tent with the fact that for an even number of ions, there
are much fewer inter-mode phase transitions, as the spin
order in these cases has a reflection symmetry.

As we add a transverse B field to the Hamiltonian,
the spins will gradually become polarized along the x-
direction along B. In Fig. 2b, we plot the aver-
age polarization

〈
∑

n σ
x
n

〉

/N as a function of the field
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Figure 2: (Color online) (a) Ground-state phases at B = 0 characterized by the corresponding spin orders for N = 3, 5, 7, 9
ions. The transition points are positioned by the values of µ whereas the phonon mode frequencies are presented in parentheses.
(b) Average polarization

〈

ΨG|
∑

n
σx
n|ΨG

〉

/N for N = 7 ions at finite fields B with |ΨG〉 denoting the ground state. The right
figure is a closeup near the critical point.

B (in the unit of the average Jmn defined by J̄ ≡
√

∑

m 6=n |Jmn|2/[N(N − 1)]) for N = 7 ions in a small

region of the detuning µ. We find that the system is eas-
ily polarized if it lies at the critical point between two
different spin orders given by the Ising couplings. But
near the center of a spin phase, the spin order is more ro-
bust and can persist under a finite B, eventually yielding
to the polarized phase as B increases through the Ising-
type transition (which becomes a broad crossover for this
finite system).

With B = 0, the transition between different spin or-
ders is sharp as it is characterized by a level crossing
for the ground state of the Hamiltonian (1). When we
turn on a finite B field, the system shows only avoided
level crossings in its ground state, and typically the sharp
phase transition at B = 0 should be replaced by a broad
crossover for this small system, similar to the Ising-type
of transition discussed above. Interestingly, this is not
always the case. We find that for some transition, even
at a finite B, the boundary between different spin phases
remains very sharp (as characterized by the transition
width defined in Fig. 4). To see this clearly, we look
at a particular example: for N ions when N is odd [13],
numerical diagonalization shows there is a unique spin
phase transition in the region between the 2nd and 3rd
highest modes. A schematic phase diagram for this re-
gion is presented in Fig. 3a. At B = 0, we have a fer-
romagnetic phase on the left side which is doubly degen-
erated and a kink phase on the right side which is 4-fold
degenerate. At finite B, these two spin orders remain ro-
bust in a range of B, before eventually yielding to a po-
larized phase for a large B field through a crossover. In
Fig. 3b and 3c, the transition between the ferromagnetic

(red region) and the kink (blue region) phases can be wit-
nessed by the emergence of the sharp boundary when the
number of particles is moderately increased from 5 to 9.
It is also interesting to note that the transition boundary
between these two phases has a slope with the B axis, so
one can cross this phase transition by tuning either the
detuning µ or the field B.

To characterize sharpness of the transition between
the ferromagnetic phase and the kink phase, in Fig. 4a
we look at energies of the four lowest eigenstates of the
Hamiltonian (1) as functions of B or µ across the phase
boundary. While the ground state energy is a smooth
function of µ at a finite B, the first and second excited
states have a level crossing. As the number of ions N in-
creases, the ground state energy quickly approaches the
level crossing point with the energy gap ∆E shown in
Fig. 4a shrinking exponentially with N , signaling a sharp
phase transition already at a modest ion number. The
transition width W defined in Fig. 4 is apparently pro-
portional to the energy gap ∆E, and in Fig. 4b, ∆E
is shown as a function of the ion number N , which can
be well fit with the formula ∆E ≃ J̄(B/J̄)(N−1)/2. The
exponential shrinking of ∆E with N can be intuitively
understood as follows: when B ≪ J̄ we can treat the
term B

∑

n σ
x
n as a perturbation in the Hamiltonian (1).

For each application of B
∑

n σ
x
n, we can only flip the

direction of one spin. As the ferromagnetic state and
the kink state have (N − 1) /2 spins taking opposite di-
rections, the two states need to be connected through
(N − 1)/2-th order perturbation, and thus the energy
gap is proportional to (B/J̄)(N−1)/2.

As one can see from Fig. 2a, the typical spacings be-
tween the transverse modes are very insensitive to the ion
number N under a fixed aspect ratio ω⊥/ω|| that is large
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Figure 3: (Color online) (a) The schematic phase diagrams for odd numbers of ions in the region between the 2nd and 3rd highest
modes. For a small number of ions, the solid line represents a sharp transition, whereas the dashed lines represent a continuous
crossover to the polarized state. (b,c) The calculated theoretical phase diagrams for (b) N = 5 and (c) N = 9 ions. Color shows

the order parameter defined by PFM −PK , where PFM ≡
∑

s=↑,↓ |〈s, s, · · · , s|ΨG〉|
2 and PK ≡

∑

s=↑,↓ |〈s
(N+1

2
), s̄(

N−1

2
)|ΨG〉|

2+

|〈s(
N−1

2
), s̄(

N+1

2
)|ΨG〉|

2 are the projection probabilities of the ground state |ΨG〉 of the system to the Hilbert subspace with the

ferromagnetic and the kink orders, respectively. (|s(m), s̄(N−m)〉 ≡ Πm
i=1|si〉Π

N
i=m+1|s̄i〉, where s denotes the spin orientation

with ↑̄ ≡↓ and vice versa).
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Figure 4: (a) The structure of the lowest four energy levels
around the sharp ferromagnetic-kink phase transition. The
two lowest states have a ferromagnetic (kink) order on the left
(right) side. The transition width W is defined as the distance
between two points A1 and A2 located in the ferromagnetic
(kink) phase, respectively, with the order parameter PFM −
PK defined in Fig. 3 caption changing from 0.71 (at A1)
to −0.68 (at A2) for N = 9 and B/J̄ = 0.05. (b) Data
points ∆E (in log-scale) as a function of the ion number N
and magnetic field B, on top of a solid line representing the
relation κ ≡ log(∆E/J̄)/[N−1

2
log(B/J̄)] = 1. For each N ,

those dots correspond to B/J̄ increasing from 0.005 to 0.05
with a step-size of 0.005. The largest deviation in this figure
occurs at N = 11, B/J̄ = 0.05, where κ− 1 = 3.4%.

enough to stabilize the ion chain. For instance, the spac-
ing between the highest and the second highest modes

can be roughly estimated by δω12 ≃ ω2
||/(2ω⊥), which is

clearly independent of N . To observe the sharp phase
transition predicted in Fig. 3, we need a resolution in
detuning µ about the order of ∼ 5 × 10−4ω⊥ = 2.5 kHz
under a typical value of ω⊥ ∼ 2π × 5 MHz. This is fea-
sible with current technology where the detuning can be
controlled very precisely. The width of transition defined
in Fig. 4 shrinks very rapidly with N : for instance, with
N = 9 and B/J̄ = 0.05, the width has been reduced to
W ∼ 3 × 10−6δω12, so it is possible to observe a very
sharp phase transition with a few ions already.

In summary, we have shown that laser induced mag-
netic coupling between trapped ions realizes a frustrated
Ising spin network with competing long range interac-
tions, giving rise to rich phase diagrams for the ground
state. Some of the phase transitions in this system are
characterized by a unusual finite size scaling, where the
transition width scales down exponentially with the num-
ber of ions. This exponential finite size scaling leads to
sharp phase transitions for a small system even with just
a few ions, as one can realize now in the lab.
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