
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Subdiffusion of a Sticky Particle on a Surface
Q. Xu, L. Feng, R. Sha, N. C. Seeman, and P. M. Chaikin
Phys. Rev. Lett. 106, 228102 — Published  2 June 2011

DOI: 10.1103/PhysRevLett.106.228102

http://dx.doi.org/10.1103/PhysRevLett.106.228102


LB13135

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Subdiffusion of a Sticky Particle on a Surface

Q. Xu,1 L. Feng,1 R. Sha,2 N. C. Seeman,2 and P. M. Chaikin1

1Center for Soft Matter Research, New York University, New York, New York, 10003, USA
2Chemistry Department of New York University, New York, New York, 10003, USA

Conventional diffusion 〈∆R2(t)〉 = 2Dt gives way to subdiffusion 〈∆R2(t)〉 ∼ tµ, 0 < µ < 1 when
the waiting time distribution ϕ(τ ) is non-integrable. We have studied a model system, colloidal
particles functionalized with DNA “sticky ends” diffusing on a complementary coated surface. We
observe a crossover from subdiffusive to conventional behavior for 〈∆R2(t)〉 and ϕ(τ ) as tempera-
ture is increased near the particle-surface melting temperature consistent with a simple Gaussian
distribution of sticky ends. Our results suggest that any system with randomness in its binding
energy should exhibit subdiffusive behavior as it unbinds. This will strongly effect the kinetics of
self-assembly.

PACS numbers:

Diffusive processes are of wide interest in understand-
ing various phenomena from the self-assembly materials
[1,2] to the kinetics of reaction [3], the migration of large
molecules [4], transport in complex networks [5] and pro-
tein dynamics [6-8]. Typically diffusive behavior is char-
acterized by the mean squared displacement (MSD) in-
creasing linearly with time. However, for many physical
systems, an anomalous time dependence is found [4, 6, 7,
9-14]. That is, 〈∆R2(t)〉 ∼ tµ, with µ 6= 1. As has been an-
alyzed in the continuous random walk model (CTRW) [15,
16], subdiffusion (µ < 1) may arise when there is a broad
distribution of local waiting times, ϕ(τ) ∼ τ−(1+µ); while
superdiffusion (µ > 1) corresponds to long-range correla-
tions in velocities or “Levy flights”. Although mechanisms
for anomalous diffusion have been studied theoretically
and numerically, there have been few experimental tests of
subdiffusion where displacements, and waiting times are
experimentally measured and compared with a theoreti-
cal model. In this letter we present an investigation of a
model system: Licata and Tkachenko analyzed such sys-
tems and found complex behavior including self-diffusion.
Moreover, this colloidal system with its specific reversible
bonds is often used for self-assembly where the kinetics, of-
ten slow relaxational kinetics, are important to understand
both the formation process and the final structures[17-22].
A basic question for complex self-assembly is how parti-
cles diffuse on each other’s surface once they are bound
and how long should the system be allowed to equilibrate.

A schematic of the experimental geometry is shown in
FIG.1. The DNA used contains 61-nucleotides(ordered
from IDT, Coralville, IA), hybridized from its 5′ end with
complementary DNA strands including 49 nucleotides,
leaving one base as a hinge and 11 unpaired bases for use
as “sticky ends”. The particles used in the study are 1.05
µm streptavidin coated beads (density ∼ 2.2× 103kg/m3)
purchased from Invitrogen and the substrate is a silicon
wafer coated with 5 nm Cr and 20 nm Au. The DNA
strands (labeled as C in Fig.1) are connected at the 5′

end to a TEG spacer terminated by a biotin group which
attaches to the streptavidin on the particles.The comple-
mentary DNA strands (C′-sequence) have a TEG spacer

FIG. 1: Schematic representation of our experimental system,
consisting of 1.05µm diameter streptavidine-coated beads and
a gold surface (30 nm in thickness), both of which are covered
by short(h ∼ 15nm) complementary DNA strands (C/C’). A
sterically stabilizing polymer brush prevents non-specific bind-
ing between particles and surface.

attached to a thiol group which binds to the Au surface.
The coverage of the surfaces was measured by radioactive
labeling (32P ) tracer DNA’s. This determination shows
that the average spacing between strands on the particle
and gold surfaces are about 12 nm and 18 nm respec-
tively. The entire preparation process was performed in
the buffer(pH 7.5) with a total concentration of 10 mM
phosphate, 50mM NaCl and 0.5% w/w Pluronic surfac-
tant (F108, the Polymer brush shown in the FIG.1). The
particles are heavy so that their motion is confined in the
region near the bottom plane. Therefore, the system can
be treated as 2D in our experiments.

The aggregation of complementary DNA functional-
ized colloids is well described in Refs [19,20] and char-
acterized by the fraction of singlet, unpaired particles
as a function of temperature. Here we adapt a simi-
lar convention and plot the melting curve, FIG.2(a), for



FIG. 2: Experiment results. (a) The fraction of moving par-
ticles as function of temperature. The hollow triangles are
the experiment data and the solid black line is the best fit-
ting curve choosing ∆Sp = −14.76R.(b) Ensemble-averaged
mean squared displacement varies with temperature. The solid
red lines indicate power-law fits. Consequently, µ = 0.35 ±
0.02(T = 44.1oC), 0.53 ± 0.02(T = 44.3oC), 0.78 ± 0.03(T =
44.5oC), 0.99± 0.03(T = 44.7oC) (curves from bottom to top).
(c) The trajectories of the a the same particle over 10 hours at
T = 44.1oC, 44.3oC, 44.5oC, 44.7oC.

particle-substrate binding as the fraction of moving par-
ticles. “Moving” is defined as a displacement larger than
50nm (1 pixel) between frames (frame rate=1Hz). The
free energy of a single tethered DNA bond is ∆Ftether =
∆H0 − T∆S0 − T∆Sp, with ∆H0 = −322.4 kJ/mol K,
∆S0 = −935.6J/mol K for the sequence we used [23] and
∆Sp is the entropy loss due to the restriction of its mo-
tion when joining the surface between beads [24, 25]. The
binding free energy of the bead is therefore

∆Fbead = −RT ln[(1 + ke−∆Ftether/RT )Nb − 1]. (1)

where, Nb is the maximum number of bridges which can
form between surfaces and k indicates the number of bonds
that opposing sticky ends can reach. A simple geometrical
estimate [20] gives Nb ≃ 150 and k ≃ 13 for our config-
uration. The solid line in FIG.2(a) is a model fit (the
expression given in Ref. [26]) using ∆Sp = −14.76R.

Displacement vs time measurements were taken by
tracking individual particles with a microscope (Qimage
Retiga 1300 camera on a Leica microscope 100x, 50 nm
pixel size) over the temperature range 43 − 47oC. Care
was taken to avoid any slow drift of the camera during
our observation. The sample is restrictedly sealed from
the atmosphere so that there is no external flow and evap-
oration of the solution. Specific trajectories at 44.1oC,
44.3oC,44.5oC and 44.7oC are shown in FIG.2(c). At
each temperature 10 different particles trajectories were
measured from 10sec to 10hrs. For all the temperatures,
the experiments were repeated for 10 separate samples.
At temperatures above the melting temperature of 45
oC, FIG.2(a), conventional diffusion was observed with
D47oC = 〈∆r2(t)/4t〉 ≈ (0.38 ± 0.02)µm2/s. This value
is about 56% of the free diffusion (Df ) value due to hy-
drodynamic proximity of the surface. At 44.7oC, the
diffusion constant is greatly reduced, D44.7oC ≈ 1.4 ×
10−3µm2/s ∼ D47oC/270 but diffusion is still conven-
tional, 〈∆R(t)2〉 ∝ t. At this temperature, the particle
is bound by DNA hybridization to the surface for a cer-
tain waiting time τ , escapes from the surface and diffuses
freely for an average time, τfree ∼ 0.4s, an average step-
size, l ∼

√

D47oCτfree ∼ 0.8µm and then rebinds to the
surface. The characteristic distance l ∼ hg = kBT/mg is
the gravitational height. Therefore, in our system diffu-
sion is governed by a well defined stepsize h and a tem-
perature dependent distribution of waiting times, τ . If
〈τ〉 exists, D ≃ h2

g/〈τ〉 . On further lowering the tem-
perature the DNA binding becomes more important and
as the waiting time increases the ensemble averaged MSD
becomes subdiffusive. A power law fit to the experimen-
tal results gives µ = 0.35 ± 0.02, 0.53 ± 0.02, 0.78 ± 0.03
as T = 44.1oC, 44.3oC, 44.5oC, FIG.2(b). In this regime,
mobility decreases precipitously as temperature is lowered
and the dynamics is remarkably slowed down. The fact
that the residence time τ in the “traps” becomes very
long compared to 〈τfree〉 allows us to treat our system
with a standard CTRW model in this temperature range.
For T < 44.1oC, the probability for particles to desorb
from the surface is too small to distinguish any significant
motion.

Intrinsically, subdiffusive behavior is related to the wait-
ing time, τ , before each step. In these experiments we have
measured the waiting time along with the displacement for
all particle trajectories. Again we use a simple protocol
that a particle is not moving if its displacement is less than
50nm (1 pixel). Here, we recorded τ of each step during
the diffusion process for every single particle, which statis-
tically gives the likelihood of a particle sitting in a position
for time τ before performing next jump. The results can
be further converted into probability density distribution
of waiting time, ϕ(τ), which is shown in FIG.3 for the four
temperatures studied. The log-log plots show good fits to
power laws ϕ(τ) ∼ τ−(1+µ′) with µ′ = 0.32, 0.55, 0.73, 1.00
respectively.

Generally, if the number of bonds (Nb) formed between
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FIG. 3: Distribution of trapping time τ . The solid black lines
indicate the power law fits to the experimental results of escape
probability ϕ(τ ) with µ′ = 0.32, 0.55, 0.73, 1.00.

a particle and surface is constant for a fixed geometry, the
characteristic time for this particle to stick on the sur-
face is given by τ̄ (Nb, T ) =

1
ω exp (−∆Fbead(Nb, T )/kBT ).

Here the escape attempt frequency ω ∼
Df

Rh ln(R/h) ∼

20Hz, which is the inverse of time to diffuse a DNA bond
length (h ∼ 15nm) [27]. However, in our experiment,
where the particle explores the DNA covered substrate,
the number of bonds Nb varies for each particle-surface
configuration due to shape and coverage heterogeneities.
Thus, instead of treating Nb as constant, it is more rea-
sonable to introduce a statistical distribution ρ(Nb) for the
probability ofNb bonds connecting particle to surface. For
each Nb, there is a characteristic time τ̄(Nb, T ) as above
and the unbinding is a Poisson process with the probability
of survival at time τ : Ps(τ) ≈ e−τ/τ̄(Nb,T ). For a normal-
ized distribution of bond numbers ρ(Nb), this probability
becomes P (τ, T ) =

∑

Nb 6=0 ρ(Nb)e
−τ/τ̄(Nb,T ) and the dis-

tribution of waiting times, τ ,

ϕ(τ, T ) = −
dP (τ, T )

dt
=

∑

Nb 6=0

ρ(Nb)

τ̄ (Nb, T )
exp(−

τ

τ̄ (Nb, T )
).

(2)
ϕ(τ)∆τ gives the escape probability during the interval
τ → τ +∆τ . Assuming that the heterogeneities in parti-
cle and surface coverage are uncorrelated, we take ρ(Nb)

as a Gaussian distribution ρ(Nb) =
1√

2πσ2
exp(− (Nb−N̄)

2σ2 )

with the mean value N̄ and variance σ. Here, the mean
number of the contacts is determined by our radioactive
trace measurement: N̄ ≃ 150. Therefore, the distribu-
tion has only one unknown, the variance σ, which can be
adjusted to the data. In FIG.4 (a) we show the calcu-
lated and measured ϕ(τ) superposed where a least square
fit was used to obtain σ = 29.8 ± 0.04 [28]. Why does
this work so well given that our ϕ(τ) (Eq.(2)) is not an
obvious power law? In FIG.4(b), we plot ϕ(τ) for the tem-
perature range of interest on log-log scales. It is clear that

FIG. 4: (a). Comparison between experimental results and
model calculation of escape probability ϕ(τ ) at temperature
T = 44.1oC, 44.3oC, 44.5oC, 44.7oC. (b). Calculated trap-
ping time distribution ϕ(τ ) and least squares power law fits
for the same temperatures as in a). Fit exponents are µCalc

fit =
0.33, 0.54, 0.79, 1.09 respectively. Inset plot is ϕ(τ, T ) for the
time range 100s ∼ 3× 104s.

over the region of experimental interest 1000 ∼ 10000s
the function ϕ(τ, T ) is well fit (correlation= 0.998) by
a power law. Here, µCalc

fit = 0.33, 0.54, 0.79, 1.09 for
T = 44.1oC, 44.3oC, 44.5oC, 44.7oC.

In random walk theory, subdiffusion occurs when the av-
erage waiting time diverges, 〈τaver〉 ∼

∫∞
0

τ · τ−(1+µ)dτ →
∞ (µ < 1). Finite 〈τaver〉 gives linear diffusion. Never-
theless, our statistical model indicates that (from Eq.(2)):

〈τaver〉 =

∫ ∞

0

τϕ(τ)dτ

=
1

ω

∑

Nb 6=0

ρ(Nb)[(1 + ke−∆Fbead/kBT )Nb − 1]
(3)

so that 〈τaver〉 remains finite. If we wait long enough,
the particles must eventually exhibit conventional diffu-
sion. If 〈τaver〉 is much longer than the total obser-
vation time (τtotal ∼ 10hrs), the particle will not ex-
plore the end of the power law tail of ϕ(τ, T ). Thus,
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the subdiffusive behavior in this experiment happens only
for comparatively short observation time during which
the particles are not in equilibrium. It is interesting
to ask how many 〈τaver〉 one has to wait before getting
conventional “equilibrium” diffusion rather than subdif-
fusion. Since our experimental 〈τaver〉 depends on T ,
we can observe this crossover simply by increasing the
temperature. For T = 44.1oC, 44.3oC, 44.5oC, τaver =
1.32 × 106s, 3.10 × 105s, 8.25 × 104s respectively, all of
which are longer than τtotal and exhibit subdiffusion. But
for T = 44.7o, τaver = 2.5 × 104s < ttotal ∼ 3 × 104s and
we observe conventional diffusion.
In summary, we have observed subdiffusion and a

crossover to conventional diffusion in a model system of
sticky particles made from DNA-functionalized colloids
and a complementary DNA coated surface. We show the-
oretically that the subdiffusion results from a distribution
of local waiting times related to a Gaussian distribution
of binding energies and Poisson statistics. This is use-
ful directly for studying the kinetics of DNA-based self-
assembly and particularly its temperature dependence.
However, the fact that almost all “sticky” systems have
some Gaussian randomness in their binding energies sug-
gests that subdiffusion should be ubiquitous over a tem-
perature range near the dissociation point. We find that
the crossover to conventional diffusion occurs as soon as
the measurement time is longer than the average escape
time.
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