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We study nanomechanical resonators with frequency fluctuations due to diffusion of absorbed
particles. The diffusion depends on the vibration amplitude through inertial effect. We find that,
if the diffusion coefficient D is sufficiently large, the resonator response to periodic driving displays
bistability. The lifetime of the coexisting vibrational states exponentially increases with increasing
D and displays a scaling dependence on the parameters close to bifurcation points.
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Micro and nanomechanical resonators are studied in
various contexts, from macroscopic quantum physics [1–
4] to charge and mass sensing [5–9] to atomic and mag-
netic force microscopy [10]. They often have extremely
narrow spectral lines at the fundamental mode frequency
ω0, with linewidth . 10−5ω0. An important factor in
determining the line shape can be decoherence due to
random frequency modulation. In turn, the modulation
can itself depend on the vibration amplitude. An exam-
ple is provided by the decoherence due to diffusion of
massive particles along the resonator [11, 12]. It occurs
because the change of the resonator frequency depends
on the particle positions [8]. However, because of inertia
the particles themselves are driven toward the antinode
of the mode [9], as beads on a vibrating string.

The dynamics of a resonator with diffusing particles
becomes particularly interesting in the presence of a com-
paratively strong periodic driving at frequency ωF close
to ω0. Here one can think of the occurrence of two vi-
brational states. In one of them the vibration amplitude
is large, the diffusing particles concentrate close to the
mode antinode and tune the vibration frequency of the
resonator close to ωF , leading self-consistently to a large
amplitude. In the second state the vibration amplitude
is small, diffusion leads to an almost uniform distribu-
tion of particles over the resonator, tuning the vibra-
tion frequency further away from ωF , which results, self-
consistently, in a small vibration amplitude, see Fig. 1.

In this paper we show that driven nanoresonators can
display diffusion-induced bistability (DIB), and the DIB
may arise even where there are only a few or even one
diffusing particle. Besides the physics of nanoresonators,
the phenomenon is interesting from a broader perspec-
tive. Indeed, particle diffusion causes fluctuations of the
nanoresonator frequency, and if the system is bistable,
they lead to fluctuational switching between the coexist-
ing states i = 1, 2. The notion of bistability is meaningful
where the switching rates Wij are much smaller than the
vibration relaxation rate Γ, so that switching events are
short and rare. The strong inequality Wij � Γ requires
that the fluctuation intensity D be small; for example, for
Gaussian fluctuations Wnm displays an activation depen-
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FIG. 1. Nanobeam resonator with diffusing particles. (a)
In the low amplitude vibrational state the particle density
ρD(x) is almost uniform. (b) In the high-amplitude state, the
particles are driven toward the antinode and the distribution
has a pronounced maximum there. Because of the different
mass distribution, the resonator eigenfrequencies in (a) and
(b) are different, which can lead to bistability of resonant
response.

dence on D [13]. One might think that, since frequency
fluctuations are due to diffusion, D is proportional to the
diffusion coefficient D, and thus the DIB requires small
D. In fact, the DIB occurs for large D, where diffusion
largely averages out frequency fluctuations, and as we
show, Wij/Γ is exponentially small, with | lnWij | ∝ D.

The DIB bears on noise-induced transitions [14],
where the stationary probability distribution of a system
changes from single- to double peaked with increasing
noise intensity. The occurrence of such a change does not
indicate bistability, unless the peaks are well separated;
moreover, in a bistable system the heights of the distribu-
tion peaks are strongly different (exponentially different,
for the DIB for large D), with ratio ∝ W12/W21, and
become close only in a narrow parameter region where
W12 ≈ W21. The DIB is somewhat closer to the noise-
induced bistability seen in numerical simulations of a
biomolecular system [15]; however, the conditions for the
onset of the bistability and the parameter range where it
occurs were not discussed in Ref. 15.

The suppression of fluctuations that leads to the DIB
for one or a few diffusing particles can be understood for
diffusion along a doubly clamped nanobeam, see Fig. 1.
Such diffusion was seen in recent experiment [12] and its
effect on the spectrum of linear response was analyzed
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earlier [11]. If the beam length is L, for a fixed vibra-
tion amplitude the particle distribution is formed over
the diffusion time tD = L2/D or faster. The distribution
depends on the amplitude. In turn, it determines the
nanobeam eigenfrequency. Then, if tD is small compared
to the vibration decay time tr = 1/Γ, one can think of
the eigenfrequency as being a function of the instanta-
neous amplitude. This is a familiar cause of bistability
of forced vibrations [16]. Fluctuations are determined by
small nonadiabatic corrections, they are generally non-
Gaussian, and as we show have intensity ∝ tD/tr � 1.

We will consider a nanobeam with N diffusing parti-
cles of mass m and assume that Nm � M , where M
is the nanobeam mass. In the fundamental mode, the
transverse nanobeam displacement as function of the lon-
gitudinal coordinate x, see Fig. 1, has the form q(t)φ(x),
where φ(x) describes the spatial profile of the mode and
q(t) gives the vibration amplitude; we set

∫
φ2dx = L.

The vibrational kinetic energy is

Tkin =
1

2

∫
dx µ(x)φ2(x)q̇2. (1)

Here, µ(x) = M/L+m
∑
n δ(x−xn), where xn is the nth

particle position along the beam. From Eq. (1), the par-
ticles change the nanobeam eigenfrequency from its value
without them ω0 to ωe ≈ ω0− (mω0/2M)

∑
n φ

2(xn). At
the same time, the vibrations create an effective potential
−mq̇2φ2(x)/2 for the diffusing particles.

In the presence of friction and a force F cosωF t, the
vibrations are described by equation q̈ + 2Γq̇ + ω2

eq =
(F/M) cosωF t. We will assume that Γ, t−1D , |ωF − ω0| �
ωF and separate fast oscillations at frequency ωF from
their slowly varying amplitude and phase. To this end,
we change from q, q̇ to dimensionless slow complex vari-
ables u, u∗

u(t) = (2MΓ/F )(ωF q − iq̇) exp(−iωF t), (2)

dimensionless slow time τ = Γt, and dimensionless par-
ticle coordinates zn = xn/L. In the neglect of fast-
oscillating terms, from Eq. (2)

du

dτ
= Kr +KD, Kr = − (1 + iΩ)u− i,

KD = −iu
∑

n
ν(zn), Ω = (ωF − ω0)/Γ, (3)

where Kr and KD describe the resonator dynamics with-
out diffusing particles and the effect of these particles,
respectively; ν(z) = (mω0/2ΓM)φ2(Lz) is the scaled fre-
quency shift of the resonator due to a particle at point
x = Lz. We disregarded thermal noise in Eq. (3); it is
usually weak for nanoresonators and does not change the
qualitative results below.

The diffusing particles are usually overdamped. Their
equation of motion in the neglect of fast-oscillating terms,
inertia, and particle-particle interaction is

dzn
dτ

= −|u|2∂znΦ(zn) + θ1/2ξ(τ), θ = l2D/L
2. (4)

Here, Φ(z) = −(F/4MΓL)2(Γκ)−1φ2(Lz), with κ be-
ing the particle friction coefficient. The scaled po-
tential |u|2Φ(z) is due to beam vibrations. Function
ξ(τ) is white Gaussian noise that leads to diffusion,
〈ξ(τ)ξ(τ ′)〉 = 2δ(τ − τ ′).

Parameter θ in Eq. (4) is determined by the diffu-
sion length during the resonator relaxation time lD =
(D/Γ)1/2 ; θ−1 � 1 is the small parameter of the theory.
The noise term in Eq. (4) is thus not small.

The probability density of the system ρ =
ρ(u, u∗; {zn}) is given by the Fokker-Planck equation

∂τρ = −{∂u [(Kr +KD)ρ] + c.c.}+
∑

n
Λznρ,

Λzρ = ∂z
[
|u|2∂zΦ(z) + θ∂z

]
ρ (5)

with boundary conditions ρ → 0 for |u| → ∞ and the
particle current equal to zero at the nanobeam bound-
aries z = ±1/2 .

We will study first the most interesting case where
there is just one particle on the nanobeam. Here, for
θ � 1 one can use the adiabatic approximation, in which
the particle distribution adjusts to the slowly varying am-
plitude |u| and phase ϕ = −(i/2) ln(u/u∗) of nanobeam
vibrations. We consider an auxiliary eigenvalue problem

Λzψα = −λαψα (6)

with boundary conditions
[
|u|2∂zΦ + θ∂z

]
ψα = 0 for z =

±1/2, where both λα and ψα depend parametrically on
|u|2. This is a standard Sturm-Liouville problem. It has
an eigenstate with zero eigenvalue,

λ0 = 0, ψ0(z; |u|2) = Z−1 exp
[
−|u|2Φ(z)/θ

]
, (7)

whereas the eigenvalues with α ≥ 1 are positive and large,
λα>0 & θ; in Eq. (7) Z =

∫
dz exp

[
−|u|2Φ(z)/θ

]
. From

Eqs. (5) and (6), in short time τ ∼ θ−1 the distribu-
tion with respect to z approaches a quasistationary, or
adiabatic, value ψ0.

We seek the overall distribution as ρ =∑
α pα(u, u∗, τ)ψα(z; |u|2). Substituting this expression

into Eq. (5), multiplying by the left eigenvectors ψ̄α of
operator Λz, and integrating over z, we obtain

∂τpα = −λαpα − [∂u(Krpα) + c.c.]−
∑

β
kαβpβ

+
∑

β
ναβ∂ϕpβ , ναβ =

∫
dzψ̄α(z)ν(z)ψβ(z). (8)

Here, kαβ =
∫
dzψ̄α(Kr∂u + c.c.)ψβ ; we note that, since

ψ̄0 = 1, k0α = 0.
From Eq. (8), function p0 evolves on dimensionless

time ∼ 1. The relaxation time of functions pα with α > 0
is λ−1α . θ−1 � 1. In this time they reach quasistation-
ary values, which can be found from Eq. (8) by setting
∂τpα>0 = 0. Close to a maximum of p0, where |∂ϕp0| .
p0, we have pα ≈ −(kα0p0 − να0∂ϕp0)/λα ∼ p0/θ. To
zeroth order in θ−1, in Eq. (8) for p0 the terms with
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FIG. 2. Regions of bistability of a nanoresonator on the
plane of the scaled intensity βD = (F/4MΓ)2/κD and fre-
quency detuning Ω of the modulating field. The solid,
dashed and dotted lines show the pairs of bifurcation lines
for ν̄ = Nmω0/2MΓ = 5, 10, 20, respectively, and for φ(x) =

21/2 cos(πx/L); the bistability occurs inside the corresponding
wedges. The inset shows a simulated scaled squared ampli-
tude of forced vibrations |u|2 as function of the scaled time
Γt for θ = 1.01, ν̄ = 10,Ω = −18.95, βD = 5.

pα>0 can be disregarded. This leads to the mean-field
approximation, p0 ≈ pMF,

∂τpMF = −∂u(K̃rpMF) + c.c., K̃r = Kr − iuν00. (9)

Parameter ν00 ≡ ν00(|u|2) gives the shift of the nanores-
onator frequency, ω0 → ω0 − Γν00, which is determined
by the vibration amplitude and the diffusion coefficient
through Eq. (7).

Equation (9) corresponds to fluctuation-free motion in
the rotating frame, du/dτ = K̃r. The stationary states
u = const determine periodic vibrational states of the
resonator. Their scaled squared amplitude can be found
from equation

|ust|2 =
{

1 +
[
Ω + ν00(|ust|2)

]2}−1
. (10)

Equation (10) can have 1 or 3 solutions. The case of 3
solutions corresponds to the diffusion-induced bistability
qualitatively explained in Fig. 1; only the solutions with
the largest and smallest |ust|2 are stable.

The nonlinear response of the resonator displays the
dependence on the field amplitude F and frequency ωF ,
which is similar to the familiar response of an oscillator
with cubic nonlinearity [16]. The parameter range where
the bistability occurs is limited by the bifurcation lines
where two solutions of Eq. (10) merge. This range has a
characteristic wedge-like shape shown in Fig. 2.

A major effect of fluctuations caused by diffusion and
disregarded in Eq. (9) is switching between the coexisting
vibrational states. Such switching can be seen in the
inset of Fig. 2 that illustrates the time dependence of |u|2
obtained by numerical simulations. The resonator mostly
performs small-amplitude fluctuations about the stable
states determined by Eq. (10). However, occasionally
there occurs a large fluctuation that drives it sufficiently
far away to cause switching.

The switching rates are determined by the tail of the
probability distribution for u far from its stable values.
This tail is steep, with |∂upα| ∝ θpα in Eq. (8). The
approximation that led to Eq. (9) does not apply on the
tail.

The analysis simplifies if the system is close, but not
too close to a saddle-node bifurcation point where a sta-
ble state merges with an unstable state and disappears.
Here the rate of switching from the stable state W be-
comes larger, which facilitates observing switching; the
bifurcation range is also interesting, because W often dis-
plays scaling behavior [17–19].

For Ω (or F ) close to a bifurcational value, ΩB (or FB),
the mean-field equation du/dτ = K̃r is simplified. If we
write u = uB +u′+ iu′′, where uB is the stationary value
of u at the bifurcation point, we find that the relaxation
time of u′ is 1/2, whereas u′′ varies much slower than
u′ for small |u − uB |. By adiabatically eliminating u′,
we obtain du′′/dτ ≈ η − bu′′2, where η ∝ (Ω − ΩB) is
the distance to the bifurcation point, |η| � 1, whereas
|b| ∼ 1. The bistability exists for η/b > 0.

Since |K̃r| � 1 for small |η| and |u − uB |, one can
assume, and check afterwards, that in Eq. (8) ∂upα/θpα
is also small even where |∂upα/pα| � 1. Then the qua-
sistationary solution of Eq. (8) is pα ≈ να0∂ϕp0/λα for
α > 0. Substituting this into Eq. (8) for p0, we obtain

∂τp0 = −
[
∂u(K̃rp0) + c.c.

]
+D∂2ϕp0, (11)

D =
∑
α≥1

|ν0α|2

λα
=

∫ ∞
0

dτ〈[ν
(
z(τ)

)
− ν00]ν

(
z(0)

)
〉u.

Here, z(τ) is given by Eq. (4) with |u|2 = const and 〈. . .〉u
means averaging with |u|2 = const. Since we are close to
the bifurcation point, D ≡ D(|u|2) = D(|uB |2).

Equation (11) is a Fokker-Planck equation in the res-
onator variables only. It corresponds to ν(z) in Eq. (3)
being white Gaussian noise with mean ν00 and inten-
sity D ∝ 1/D. Interestingly, D becomes small for large
D. This is because 1/D gives the correlation time of
ν(z). For slowly varying in time p0 we have D|∂up0| ∼
|K̃r|p0 � p0, justifying the earlier assumption.

The analysis of the switching rate near a bifurcation
point can be done using the method of Ref. 17. It gives

W = (Γ|ηb|1/2/π) exp
(
−4|η|3/2/3Du′2B |b|1/2

)
. (12)

From Eq. (12), the rate W displays activation depen-
dence on D ∝ 1/D. Also, lnW scales with the distance
to the bifurcation point η as η3/2.

We now consider the case of many diffusing particles,
N � 1; still we assume that their total mass is small,
Nm�M . To the leading order in 1/N fluctuations from
the particle diffusion are averaged out in the equation of
motion for the resonator (3). The mean-field resonator
dynamics is described by Eq. (9) with K̃r = Kr−iuNν00,
i.e., m for the single particle case is replaced by Nm.
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FIG. 3. The switching rate W near a bifurcation point as
function of the product of the diffusion coefficient D and the
number of particles N for βD = 5, ν̄ = 10,Ω − ΩB = 0.03
(ΩB = −19.145). Inset: scaling of lnW/Γ with the distance
to the bifurcation point Ω−ΩB for the same βD and ν̄; θ = 5.1
and N = 1. The data are the results of simulations, the solid
lines show the analytical predictions.

To describe fluctuations for N � 1 and given Nm,
one can think of the term ζ(τ) = N−1

∑
n ν (zn(τ)) in

Eq. (3) as Gaussian noise with intensity ∝ 1/N . Gener-
ally, ζ(τ) is not δ-correlated. However, if the relaxation
time tD of diffusing particles is small, θ−1 � 1, or if
the system is close to a bifurcation point, so that its re-
laxation time is long (∝ |η|−1/2) and largely exceeds tD,
the noise becomes effectively δ-correlated. Its intensity is
D/N , and the distribution of the resonator is described,
respectively, by the Fokker-Planck equation (11) with D
replaced by D/N . For large N and θ−1 � 1 this equation
is not limited to the vicinity of the bifurcation point.

The above analysis shows that the switching rate
should display activation dependence on D/N ∝ 1/ND.
This was indeed found in numerical simulations, as seen
in Fig. 3, where | lnW | ∝ ND for large ND and does
not depend on N otherwise, for fixed Nm. The simula-
tions also demonstrate the 3/2-scaling of | lnW | with the
distance to the bifurcation point.

The DIB should arise in nanoresonators and should
display the described characteristic behavior provided
the time of diffusion of attached particles over the res-
onator length exceeds the oscillation period but is smaller
than the vibration decay time. For frequency ω0/2π =
300 MHz, decay rate Γ = 105 s−1, and length L = 1 µm
the appropriate range of the diffusion coefficient D is
10−3 − 1 cm2/s. In addition, the particle mass should
not be too small, so that, for large vibration amplitude,
the energy gain from localizing a particle near the antin-
ode, which is determined by Eq. (1), exceeds tempera-
ture. Conceivable candidate systems are doubly clamped
nanobeams or cantilevers based, for example, on carbon
nanotubes, with M & 10−18 g, that have small metallic

clusters, with m . 10−20 g, diffusing along them. The in-
trinsic (Duffing-type) nonlinearity of such resonators can
be small [5, 6] and should not mask the effect.

In conclusion, we have demonstrated that diffusion of
particles in a nanomechanical resonator can cause bista-
bility of forced vibrations. The bistability can arise even
for a single particle, given that the diffusion coefficient
D is sufficiently large. In this case the rate of switching
scales as − lnW ∝ D and is much smaller than the re-
laxation rate of the resonator. We also find the scaling
behavior of W near bifurcation points. The analytical
results are in excellent agreement with simulations, in-
cluding the scaling of W with the number of particles.
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