
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamical Signatures of Edge-State Magnetism on
Graphene Nanoribbons

Hélène Feldner, Zi Yang Meng, Thomas C. Lang, Fakher F. Assaad, Stefan Wessel, and
Andreas Honecker

Phys. Rev. Lett. 106, 226401 — Published 31 May 2011
DOI: 10.1103/PhysRevLett.106.226401

http://dx.doi.org/10.1103/PhysRevLett.106.226401


LA12848

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Dynamical Signatures of Edge-State Magnetism on Graphene Nanoribbons

Hélène Feldner,1, 2 Zi Yang Meng,3 Thomas C. Lang,4 Fakher F. Assaad,4 Stefan Wessel,3 and Andreas Honecker2

1Institut de Physique et Chimie des Matériaux de Strasbourg, UMR7504,

CNRS-UdS, 23 rue du Loess, BP43, 67034 Strasbourg Cedex 2, France
2Institut für Theoretische Physik, Georg-August-Universität Göttingen,

Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
3Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany

4Institut für Theoretische Physik und Astrophysik,

Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

(Dated: January 10, 2011; revised March 27, 2011)

We investigate the edge-state magnetism of graphene nanoribbons using a combination of pro-
jective quantum Monte Carlo simulations and a self-consistent mean-field approximation of the
Hubbard model. Static magnetic correlations are found to be short-ranged. Nevertheless, the corre-
lation length increases so rapidly with the width of the ribbon that already for ribbons of moderate
widths we observe a strong trend towards mean-field type ferromagnetic correlations at a zigzag
edge. These ferromagnetic correlations are furthermore shown to be accompanied by a dominant
low-energy peak in the local spectral function and we propose that this can be used to detect edge-
state magnetism by scanning tunneling microscopy experiments. Finally, we present results for the
dynamic spin structure factor at the edge of a ribbon and verify the presence of an approximately lin-
early dispersing collective magnon-like mode at low energies that decays into Stoner modes beyond
the energy scale where it merges into the particle-hole continuum at higher energies.

PACS numbers: 71.10.Fd; 73.22.Pr; 75.40.Mg

Graphene is regarded as a promising candidate for fu-
ture electronics. The electronic properties of nanodevices
based on this material are in a large part governed by
their edge structure. Besides their potential for nano-
electronics and spintronics [1–5], graphene nanoribbons
exhibit a remarkable interplay of low dimensionality, a bi-
partite lattice and electron-electron interactions. One of
the most fundamental predictions for graphene nanorib-
bons (with zigzag edges) is the possibility of spontaneous
edge-state magnetism, whereas bulk graphene is non-
magnetic [6–12]. Although electron-electron interactions
are crucial for the emergence of edge-state magnetism,
essentially all these predictions are based on mean-field
type approximations. While such mean-field approxima-
tions were found – by comparing to numerical exact re-
sults – reliable at least for certain quantities and in the
weak-coupling regime [13] on small honeycomb clusters,
Lieb’s theorem predicts no net magnetization for a bipar-
tite system at half filling [14] and the Mermin-Wagner
theorem [15] actually forbids true long-range order for a
ribbon with a fixed finite width. This is consistent with a
sigma-model treatment which predicts a spin gap, i.e., a
finite spin-spin correlation length for an even number of
zigzag lines [16]. Furthermore, a numerical study indeed
found a quite short correlation length in the case of two
zigzag lines [17].

In view of this puzzling situation, and given the grow-
ing experimental effort toward probing the magnetism
of graphene nanoribbons, we believe that there is need
for an accurate numerical treatment of the Hubbard
model description. Here we present projective ground-
state quantum Monte Carlo simulations [18] and compare

them with a self-consistent mean-field theory (MFT) [13].

For narrow ribbons we find indeed a finite correla-
tion length, i.e., the static magnetism is an artifact of
the mean-field approximation. However, with increas-
ing width we observe a fast convergence of the quali-
tative behavior of the correlation functions towards the
MFT result corresponding to strong ferromagnetic or-
dering tendencies. Since the ferromagnetic order is not
static but subject to fluctuations, we next explore the
dynamical properties of the nanoribbons, focusing both
on local and momentum-resolved single-particle and spin
spectral functions. We find that the single-particle spec-
tral function on the edge exhibits a low-energy peak as a
dynamic signature of the edge-state magnetism. The spin
spectral functions reveal the onset of magnon-like exci-
tations on top of the fluctuating magnetic background
along the zigzag edge. We exhibit a linear contribution
to their low-energy dispersion [7, 19, 20] and, even more
interestingly, the damping of this mode into the Stoner
continuum [20].

The ribbon geometry considered here is depicted in the
inset of Fig. 1. We employ periodic boundary conditions
at the armchair edge and open boundary conditions at
the zigzag edge. L and W denote the length and the
width of the ribbon, respectively. L is measured in units
of lattice vector a1 = (

√
3, 0) and W is the number of

zigzag legs of the ribbon. The carbon-carbon bond length
is set to unity.

The Hamiltonian of the Hubbard model reads

H = −t
∑

〈i,j〉,σ

(c†i,σcj,σ + c†j,σci,σ) + U
∑

i

ni,↑ni,↓ (1)



2

FIG. 1. (Color online) Real-space spin-spin correlation func-
tion along the zigzag edge of ribbons. Points are the QMC
and MFT data and lines are the fits with Eq. (2). Inset: Ge-
ometry of the graphene nanoribbon with zigzag edge, L = 6,
W = 4, and lattice size N = 2× L×W = 48. Red and blue
circles represent the positive and negative values of the local
magnetization 〈Sz

i 〉 =
1

2
〈ni,↑ −ni,↓〉, calculated from MFT at

U/t = 2. Radii are proportional to the magnitude.

with 〈i, j〉 nearest neighbors on the lattice, σ =↑, ↓ and

ni = c†i ci. We concentrate on half filling, i.e., the number
of electrons is equal to the number of lattice sites. MFT
for the 2D periodic honeycomb lattice yields a transition
from a semimetall to an antiferromagnet at Uc/t = 2.23
[21] whereas QMC reveals a metal-insulator transition
for Uc1/t = 3.5(1) and a further nonmagnetic insulator-
antiferromagnetic insulator for Uc2/t = 4.3(1) [22]. In
this work, we focus on the interaction range U/t ≤ 2 since
we are interested in the behavior of the system in the
weak-coupling regime. Estimates of the local Coulomb
repulsion U for graphene [12] lie around U/t = 1 and
thus fall indeed into this regime.
The inset of Fig. 1 shows the MFT result for the local

magnetization at the edge of a W = 4, L = 6 ribbon at
U/t = 2 and illustrates the edge-state magnetism which
is expected for weak Coulomb interactions U/t > 0 [6–
12]. This is reflected by the MFT result for the spin-
spin correlation function which is shown by triangles for
W = 6, L = 45, and U/t = 2 in the main panel of Fig. 1:
the correlation function rapidly approaches a constant
value as a function of distance x along the edge with
very little dependence on the width W of the ribbon (not
shown).
By contrast, the QMC results for the static spin-spin

correlation function shown in the main panel of Fig. 1
exhibit a clear decay, at least for narrow ribbons with
W = 2 (circles) and 4 (squares). Note that the rapid
decay for W = 2 is consistent with a previous DMRG
study [17]. However, as the width increases, the decay
becomes slower and the QMC result for W = 6 in Fig. 1
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FIG. 2. (Color online) Spectral functions of a width W = 4
ribbon at U/t = 1. QMC data is for a ribbon of length L = 30
whereas MFT corresponds to the thermodynamic limit. The
inset shows QMC results for the momentum-resolved spectral
function A(q, ω) along the zigzag edge, while the main panel
shows the local spectral function A(ω) subject to a Lorentzian
broadening ∆ω = 0.02 t. Note the prominent low-energy peak
in A(ω)edge at ω/t ≈ 0.1 which is absent in A(ω)bulk.

(diamonds) is already qualitatively similar to the MFT
result.

For a more quantitative analysis we fit the QMC data
for the longest available ribbons with a function combin-
ing exponential and power-law behavior

〈S0Sx〉 = C
(

x−ηe−x/ξ + (L|a1| − x)−η e−(L|a1|−x)/ξ
)

.

(2)
From a fit for L = 60 at W = 2 we estimate ξ/|a1| =
4.0 ± 1 and η = 0.5 ± 0.3 and at W = 4 the L = 54
data yields ξ/|a1| = 15± 4 and η = 0.2± 0.15. At W =
6 it is no longer possible to distinguish the correlation
length from infinity or the exponent η from zero for the
largest available system size within our study (L = 45).
Indeed, the W = 6 QMC data can equally well be fitted
by predictions based on an infinite correlation length. We
thus arrive at a picture similar to even-leg spin ladders
[23] or integer spin-S quantum chains [24]: ribbons with
evenW have a finite spin-spin correlation length [16], but
the correlation length rapidly grows with W such that for
practical purposes it can be considered infinite forW & 6.
In this sense edge-state magnetism is found already for
ribbons of moderate widths. In order to check if MFT
becomes also quantitatively accurate for wider ribbons,
one would need to go beyond the system sizes which we
can presently access by QMC.

Since the ferromagnetic behavior at the edges remains
fluctuating in a proper treatment of the Hubbard model
(1), we now turn to the dynamic properties. In this re-
spect, the local single-particle spectral function A(ω) is
a particularly important observable since it can be ob-
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FIG. 3. (Color online) (a) Single-particle spectral function
A(ω)edge for several values of U/t and a ribbon of width W =
48. (b) Comparison of the position ωmax of the maximum of
A(ω)edge between MFT for W = 4, 48 and QMC for W = 4
and L = 30. (c) A(q, ω)edge for a ribbon with W = 48 at
U/t = 2. Unless stated otherwise, results are based on MFT
for long ribbons and a Lorentzian broadening ∆ω = 0.02 t.

served in scanning tunneling microscopy (STM) exper-
iments [25, 26]. However, to the best of our knowl-
edge, previous theoretical studies of the interplay of
edge-state magnetism and spectral functions of graphene
ribbons are restricted to density-functional approaches
[11, 27] with an inherent mean-field type approximation.
In QMC we measure the momentum-resolved Green’s
function in imaginary time G(q, τ), and then apply a
stochastic analytical continuation scheme [28, 29] to ro-
tate G(q, τ) on the τ -axis to A(q, ω) on the ω-axis. Fi-
nally, the local spectral function A(ω) is obtained by inte-
gration over the momentum q along the ribbon direction.

Fig. 2 shows the single-particle spectral function both
on the zigzag edge A(ω)edge and inside the bulk A(ω)bulk
for ribbon of width W = 4 at U/t = 1. The local
spectral functions in the main panel were subjected to a
Lorentzian broadening of ∆ω = 0.02 t. A(ω)edge exhibits
a dominant low-energy peak at ω/t ≈ 0.1 which is absent
in A(ω)bulk. This peak can be traced to a flat region of a
single-particle dispersion visible in A(q, ω)edge (compare
the inset in Fig. 2). The agreement between MFT and
QMC is excellent for this low-energy peak and the over-
all agreement is also good at higher energies. The three
additional sharp features in the QMC result for A(ω)edge
in the region 0.2 < ω/t < 0.6 can be traced to a finite-
size momentum discretization effect and are reproduced
by MFT if the latter is also restricted to a length L = 30
ribbon. We conclude that the agreement between MFT
and QMC for A(ω) is remarkable even at a quantitative
level, at least for weak interactions U/t . 1.

Having gained confidence in the accuracy of the MFT
results for A(ω), we use it to analyze a bigger and

more realistic system with W = 48, corresponding to
a graphene nanoribbon of 10 nm width. The evolution of
the low-energy peak on the edge with the Coulomb repul-
sion is shown in Fig. 3(a). The energy ωmax correspond-
ing to the maximum intensity of the spectral function in-
creases with the Coulomb repulsion U and is located at
ωmax = 0 only for U = 0, i.e., the non-interacting system.
In combination with the fact that this peak exists only
on the ferromagnetic edge (compare Fig. 2) we conclude
that it is a clear dynamic signature of edge-state mag-
netism. Fig. 3(b) demonstrates that ωmax is insensitive
to the actual width of the ribbon and confirms that MFT
is accurate for U/t . 1 (the fact that MFT becomes less
accurate as one approaches the mean-field phase transi-
tion at Uc/t = 2.23 [21] is not surprising).

The momentum-resolved spectral function (shown in
Fig. 3(c) for U/t = 2) reveals that the feature at ωmax

can be traced to the maximum of a single-particle band
at q/|a1| = π where large matrix elements and a Van
Hove singularity combine to yield a maximum intensity
of the local spectral function. The true single-particle
gap ∆sp is located in the vicinity of q/|a1| = 2 π/3 and
4 π/3. For the W = 48 ribbon shown in Fig. 3 it is
only ∆sp/t = 0.037 for U/t = 2, resulting in a fill-in
of spectral weight in the local density of states below
the ‘pseudo-gap’ ωmax (compare Fig. 3(a)). The value
of the single-particle gap ∆sp depends strongly on the
width of the ribbon; for the W = 4 ribbon shown in
Fig. 2 it is quite close to the pseudo-gap ωmax. Note
that the data in Fig. 3(a) is subjected to a broadening
∆ω = 0.02 t. With a higher energy resolution, one would
observe further features, in particular another Van Hove
singularity at ∆sp, albeit with a much smaller weight
than at ωmax.

Another probe to exhibit the peculiar magnetic prop-
erties of zigzag nanoribbons is provided by the spin spec-
tral function S(q, ω) on the edge. From the enhanced
ferromagnetic correlations along the zigzag edge at finite
values of U , one might expect S(q, ω) to exhibit collec-
tive spin-wave (magnon) excitations characteristic of a
ferromagnetic background, with a quadratic low-energy
dispersion relation near q = 0. However, as pointed out
in Refs. [7, 20], the magnetic excitations are affected by
the antiferromagnetic coupling between the two edges of
the nanoribbon that is mediated by the bulk conduction
electrons. These antiferromagnetic correlations result in
a linear contribution to the dispersion at small wave vec-
tors (see also Ref. [19]). Furthermore, for energies enter-
ing the particle-hole continuum, the collective modes can
decay into strongly damped Stoner modes [20].

Our QMC data in Fig. 4 indeed exhibit such a sce-
nario for a ribbon with W = 4: an approximately lin-
early dispersing sharp mode is observed up to a wave
vector q/|a1| ≈ 0.5 π with a threshold energy ωth/t =
0.42 ± 0.04, compatible with twice the corresponding
single-particle gap of ∆sp/t = 0.2 ± 0.02. The inset of
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FIG. 4. (Color online) QMC results for the spin spec-
tral function S(q, ω) along the edge of a zigzag ribbon with
L = 30,W = 4 and U/t = 2. The inset shows the linewidth
(FWHM) of the dominant mode in S(q, ω) as a function of
momentum q.

Fig. 4 shows the corresponding evolution of the linewidth
(FWHM) of this low-energy mode that drastically in-
creases beyond q/|a1| ≈ 0.5 π.

In summary, we have investigated the static as well as
dynamic properties of graphene nanoribbons with zigzag
edges. Upon closer inspection, true ferromagnetic long-
range order at the zigzag edge [6–12] of a finite-width
ribbon turns out to be absent [14–17], yet there are
strong ferromagnetic correlations which are essentially
long range but for the narrowest ribbons. As a next step,
we have identified a dominant low-energy peak in the
local spectral function as a dynamic signature of edge-
state magnetism, thus providing a theoretical guide for
further STM and spin-resolved STM experiments. The
agreement between QMC and MFT for the local spectral
function is remarkably accurate for moderate Coulomb
interactions, justifying a description of realistic geome-
tries within a MFT framework. In particular, we have
demonstrated that the position of the dominant low-
energy peak at the zigzag edge of a nanoribbon is con-
trolled mainly by the Coulomb interaction U such that
STM experiments can be used to deduce the appropriate
value for graphene. Lastly, we have presented QMC re-
sults for the dynamic spin structure factor at the edge of
a width W = 4 ribbon and demonstrated the presence of
an approximately linearly dispersing low-energy collec-
tive spin-wave excitations [7] that decay upon entering
the particle-hole continuum [20].
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Note added: After completion of this work, we became
aware of Ref. [30] which has observed low-energy spectral
features by STM and compared those to MFT for isolated
chiral graphene nanoribbons.
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Rodŕıguez, Phys. Rev. Lett. 104, 096804 (2010).

[27] H. Y. He, Y. Zhang, and B. C. Pan, J. Appl. Phys. 107,
114322 (2010).

[28] A. W. Sandvik, Phys. Rev. B 57, 10287 (1998).
[29] K. S. D. Beach, (2004), arXiv:cond-mat/0403055v1.
[30] C. Tao, L. Jiao, O. V. Yazyev, Y.-C. Chen, J. Feng,

X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie,
H. Dai, and M. F. Crommie, (2011), arXiv:1101.1141v1.

http://arxiv.org/abs/1007.3285v2
http://arxiv.org/abs/cond-mat/0403055v1
http://arxiv.org/abs/1101.1141v1

