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We investigate the influence of morphology and size on the vibrational properties of disordered
clusters of colloidal particles with attractive interactions. From measurements of displacement
correlations between particles in each cluster, we extract vibrational properties of the corresponding
“shadow” glassy cluster, with the same geometric configuration and interactions as the “source”
cluster but without damping. Spectral features of the vibrational modes are found to depend
strongly on the average number of nearest neighbors, NN , but only weakly on the number of
particles in each glassy cluster. In particular, the median phonon frequency, ωmed, is essentially
constant for NN < 2 and then grows linearly with NN for NN > 2. This behavior parallels
concurrent observations about local isostatic structures, which are absent in clusters with NN < 2
and then grow linearly in number for NN> 2. Thus, cluster vibrational properties appear to be
strongly connected to cluster mechanical stability (i.e., fraction of locally isostatic regions), and
the scaling of ωmed with NN is reminiscent of the behavior of packings of spheres with repulsive
interactions at the jamming transition. Simulations of random networks of springs corroborate
observations and suggest that connections between phonon spectra and nearest neighbor number
are generic to disordered networks.

PACS numbers: 63.50.Lm,61.43.Fs,63.22.Kn,64.70.kj,64.70.pv

The phase behavior and vibrational properties of en-
sembles of repulsive particles are determined largely by
packing fraction [1]. Samples of monodisperse spheres,
for example, gain structural order and eventually crys-
tallize with increasing packing fraction [1], giving rise to
low frequency plane-wave-like phonon modes. In a re-
lated vein, ensembles of polydisperse spheres gain con-
tacts with increased packing fraction, leading to vitrifi-
cation [2] and “soft phonon modes” whose properties de-
pend on average numbers of interparticle contacts [3]. By
contrast to these “space-filling” systems, particles with
strong attractive interactions can form solid-like phases
at low macroscopic packing fractions [4]. Dilute gels, for
example, mechanically percolate across large distances
[5], and disordered clusters containing relatively few par-
ticles often self-assemble into structures with large lo-
cal packing fraction [6]. In this paper we explore how
cluster morphology and cluster size affect the vibrational
properties of disordered materials held together by strong
attractive interactions. New understanding thus gained
holds potential to elucidate fundamental differences be-
tween glassy materials composed of particles with at-
tractive versus repulsive interactions, to uncover connec-
tions of cluster vibrational spectra with cluster mechan-
ical stability and the jamming problem, and to discover
attributes of a disordered cluster that endow it with the
properties of bulk glasses.

To date, a diverse collection of disordered systems have
been observed to display surprising commonality in their
vibrational properties. Such systems include molecular
[7], polymer [8], and colloidal glasses [9]. These disor-

dered solids exhibit an excess of low frequency modes
that are believed important for their mechanical and
thermal properties [10]. The low frequency modes also
appear connected to scaling and mechanical behaviors
of repulsive spheres near the zero-temperature jamming
transition. At the jamming point, such disordered pack-
ings are “isostatic”, i.e., they have exactly the number
of contacts per particle required for mechanical stability;
if a single contact is removed, the packing is no longer
stable. Interestingly, marginal stability permits parti-
cle displacements that maintain isostaticity without en-
ergy cost; these motions are manifest as low frequency
“soft” phonon modes [3,11]. When the sample packing
fraction is increased above the jamming transition, the
number of contacts per particle increases, the system is
stabilized [12], and the number of soft modes is found
to decrease [3]. In fact, the minimum soft mode fre-
quency is predicted to increase linearly with number of
contacts per particle above the isostatic requirement [3].
Recent experiments have found some of these trends in
thermal packings of repulsive particles [9], but applica-
tion of such concepts to systems with attractive interac-
tions has proven difficult. Ensembles of attractive par-
ticles can achieve isostaticity at arbitrary packing frac-
tion, and even when they do not have enough contacts
to be isostatic as a whole, the attractive systems can still
have local mechanically stable regions [11,28]. Therefore,
the study of vibrational properties in clusters of attrac-
tive particles can provide useful clues about underlying
mechanisms responsible for the mechanical properties of
disordered solids.
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Herein we experimentally investigate the influence of
cluster morphology and size on the vibrational properties
of disordered clusters of colloidal particles with attrac-
tive interactions. The disordered clusters with high local
packing fractions are formed in water-lutidine suspen-
sions where wetting effects induce fluid mediated attrac-
tions between micron-sized polystyrene particles. Each
cluster is characterized by the number of particles it con-
tains (N), an average number of nearest neighbors (NN),
and a number of local isostatic configurations (NIso).
Displacement correlation matrix techniques employed in
recent papers [9] are used to determine the phonon den-
sity of states of corresponding “shadow” attractive glass
clusters with the same geometric configuration and in-
teractions as the “source” experimental colloidal system
but absent damping.

Surprisingly, the spectra and character of vibrational
modes depend strongly on NN but only weakly on N.
The median phonon frequency, ωmed, which character-
izes the distribution of low and high frequency modes,
is observed to be essentially constant for NN < 2, and
then grows linearly with NN for NN > 2. This behav-
ior parallels concurrent observations about local isostatic
structures, which are absent in clusters with NN < 2 and
then grow linearly in number for NN > 2. Thus cluster
vibrational properties appear to be strongly connected to
cluster mechanical microstructure and stability (i.e., frac-
tion of locally isostatic regions), and the scaling of ωmed

with NN is reminiscent of the behavior of packings of
spheres with repulsive interactions at the jamming tran-
sition, even though these clusters are not jammed in the
macroscopic sense (e.g., by the criteria used in [12,28]).
Simulations of random networks of springs corroborate
observations and further suggest that connections be-
tween phonon spectra and nearest neighbor number are
generic to disordered networks.

The experiments employ bidisperse suspensions of
micron-sized polystyrene particles (Invitrogen), with di-
ameters dS = 1.5µm and dL = 1.9µm, and number ratio
1:2, respectively. Particles were suspended in a mixture
of water and 2, 6-lutidine near its critical composition,
i.e., with lutidine mass fraction of 0.28. Colloidal par-
ticles suspended in this near-critical binary mixture ex-
perience temperature-dependent repulsive or attractive
interactions, whose origins can be fluid-mediated wet-
ting, as in the current experiments, or critical Casimir
forces [13]. Interparticle potentials are shown in Fig. 1a
[27]. Particles are confined between two glass coverslips
(Fisher) with a spacing of ∼(1.1 ± 0.05)dL, making the
sample system quasi-2D. The glass cell was treated with
NaOH, so the particle-wall interaction potential is repul-
sive at relevant temperatures [16]. Many different dis-
ordered particle clusters of various sizes and shapes are
created by first suspending particles deep in the repulsive
regime (300.15 K), and then increasing the sample tem-
perature (to 306.5K) in situ. Some clusters self-assemble

while other clusters are assembled with aid of laser tweez-
ers [17, 27]. Samples equilibrated for about six hours, and
video data were collected at 10 frames per second [27].

As noted above, the particle cluster structure is char-
acterized by several factors, including average number of
nearest neighbors per particle and number of locally iso-
static configurations. Neighbors are defined as particles
spatially separated by less than a cutoff distance equal to
the first minimum in the particle pair correlation func-
tion. Local isostatic regions consist of three particles (a,
b, and c) that are mutually nearest neighbors (i.e., a and
b are neighbors, a and c are neighbors, b and c are neigh-
bors). Plots summarizing N, NN , and NIso for each
cluster studied are shown in Fig. 1b and c, along with
experimental snapshots of selected clusters (Fig. 1d-f).
Note that NN tends to increase with increasing N for
our distribution of cluster sizes, but that the increase
is not monotonic. The dependence of NIso on NN ex-
hibits two regimes. Specifically, NIso/N is 0 for NN< 2,
becomes non-zero abruptly at NN= 2, and then grows
linearly with NN for NN> 2. Thus, we identify NN= 2
as the “local isostatic” point.

The measured displacement covariance matrix [9] was
employed to extract vibrational modes of the “shadow”
colloidal clusters, which share the same geometric con-
figuration and interactions of the experimental colloidal
system, but are undamped. Comparing the frequency
spectra of clusters with small N can be challenging, since
not enough modes are present for clear identification of a
traditional “peak” frequency, and since fluctuations can
significantly shift mode frequency. For these reasons we
choose to characterize each cluster’s density of states by
its median frequency, ωmed. Plots of ωmed as a function
of average number of nearest neighbors, NN , and as a
function of total number of cluster particles, N (at nearly
fixed NN), are shown in Fig. 2a and b.

Surprisingly, ωmed has little correlation with N, ex-
hibiting linear correlation coefficients of R=0.29. This
effect is even more apparent when the number of near-
est neighbors is held nearly constant (Fig. 2b). However,
ωmed depends strongly on the average number of nearest
neighbors (NN). We observe two distinct regimes. For
NN<2, ωmed is constant. For NN>2, ωmed increases
linearly with NN (R=0.92). Interestingly, the depen-
dence of ωmed on NN is very similar to the dependence
of the number-fraction of locally isostatic configurations
per particle, i.e., NIso/N, on NN (Fig. 1b). These obser-
vations suggest that the vibrational properties of disor-
dered clusters are strongly dependent on the presence of
locally rigid elements. Note, creating a rigid triangle in a
locally unstable region may remove a zero-frequency soft
mode, but creating a locally rigid triangle in a stable re-
gion will not. Thus the observed correspondence between
ωmed and NIso is surprising, especially for larger values
of NN where locally soft regions are unlikely to appear,
i.e., NN>3.0 [11]. Furthermore, we expect to observe a
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correlation between ωmed and N for our cluster distribu-
tion, because NN tends to increase with N for typical
cluster distributions. Thus, while we would expect the
vibrational spectra of a disordered attractive cluster to
become similar to that of a bulk glass as the total number
of particles in the cluster increases, the underlying mech-
anism for this effect originates from the average number
of nearest neighbors in the cluster, rather than the total
particle number in the cluster.

Interestingly, the dependence of ωmed on NN is also
reminiscent of the behavior of hard-spheres in the vicin-
ity of the zero-temperature jamming transition [4]. In
the jamming case, the characteristic frequency, ω∗, of
excess quasi-localized or “soft” modes increases linearly
with NN when NN>NNC , where NNC is the number
of contacts necessary for isostaticity. Similarly, in our
experiments with attractive particles, ωmed increases lin-
early with NN when NN>2 and when locally rigid ele-
ments are present, despite the fact that these clusters are
not jammed in the traditional sense [12,28]. In thermal
experiments with repulsive particles, ωmed shows a strong
linear correlation with ω∗ (R =0.96), and ωmed has a
strong linear relationship with NN [9]. Thus our obser-
vations suggest that similar “jamming transition” physics
may control properties of both highly packed glasses and
disordered clusters composed of particles with attractive

interactions at low (overall) packing fraction.

As a final demonstration of the importance of NN
versus N, consider two clusters that look very differ-
ent (Fig. 1 d and e), but that have almost the same
NN . These clusters have similar characteristic frequen-
cies (i.e., ωmed = 3.0× 105(0.05) and 3.1× 105(0.05) for
Fig. 1d and e, respectively). On the other hand, two clus-
ters that contain the exact same number of particles, but
have different NN (Fig. e and f), possess a set of very dif-
ferent characteristic frequencies (ωmed = 3.1× 105(0.05)
and 3.6× 105(0.05) for Fig. 1e and f, respectively).

As per other calculable cluster properties, ωmed does
not appear to correlate strongly with many traditional
structural quantities, including the bond orientational
order parameter, ψ6 [19], the average stiffness between
nearest neighbor pairs, k̄ [20], and the cluster perime-
ter length, i.e., the contour length of cluster exterior.
These parameters do not correlate strongly with ωmed,
when NN is held approximately constant (Fig. 2c-e).
Thus, simple ideas for the effects based on surface area
or perimeter length are not sufficient to explain exper-
imental observations. Additionally, the fraction of soft
modes does not correlate strongly with ωmed, when NN
is held approximately constant (Fig. 2f) [27].

As a final check on the importance of structural quan-
tities other than NN , we explored the calculated spectra
of randomly generated networks of springs. Random net-
works of springs, expressed as matrices, Kij , were gen-
erated following simple rules that ensure the matrices
contain information about N and NN [21]: (1) Each el-

ement, ij, in the matrix represents the spring constant
between particle/coordinate i and particle/coordinate j;
(2) the number of rows/columns in these symmetric ma-
trices is twice the number of particles, representing each
coordinate of each particle; (3) the number of off-diagonal
elements greater than zero is equivalent to the number
of nearest neighbors; (4) diagonal elements are set such
that the sum of each row/column is zero, ensuring trans-
lational invariance. Thus N and NN can be varied inde-
pendently. For every combination of N and NN , 10, 000
random matrices are generated. ωmed is calculated from
the combination of all generated frequencies (Figure 3).
Note, many of these networks cannot be duplicated in
real experimental systems, since nearest neighbor pair-
ings are assigned at random and not based on proxim-
ity. Nevertheless, we found that ωmed follows the same
trends in these simulations as observed in our experi-
ments: ωmed has little or no correlation with N (i.e., with
NN held constant, ωmed changes by less than 5%), but
exhibits a strong correlation with NN (R > 0.99). Thus
ωmed appears to be the result of network connectivity,
rather than specific structure.

In conclusion, the spectra and character of vibra-
tional modes in disordered “attractive” clusters depend
strongly on the average number of nearest neighbors
and the number of locally isostatic configurations, but
do not depend strongly on the number of particles in
the cluster. The fact that ωmed depends on NN , but
not on total number and packing fraction, is reminiscent
of network glasses (e.g., silica [22]). Network glasses
are composed of particles (e.g., molecules) that have
directional bond forming interactions which set NN
[23], leading to the formation of solids at low packing
fractions. In fact, the vibrational [24] and mechanical
[25] properties of network glasses are believed to depend
strongly on NN . Thus, the disordered clusters we have
introduced could serve as a convenient model system
for network glasses and their many applications (e.g.,
non-crystalline semiconductors [26]).
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Fig. 1 a. Plot of the temperature-dependent (T=

300.15 K and 306.45 K) interparticle potential, u(r), as
a function of particle separation (r) normalized by par-
ticle diameter (D). The temperature dependence is in-
duced by wetting effects in near-critical water-lutidine
mixtures. b. Plot summarizing N and NN in every clus-
ter. c. The number-fraction of locally isostatic config-
urations per particle, NIso/N is plotted versus average
number of nearest neighbors, NN . Solid lines are linear
fits within two separate regimes. Inset: Experimental
snapshot of an N = 7 cluster with two locally isostatic
triangles. Black lines indicate the triangles. d-f. Exper-
imental snapshots of clusters with N= 261, NN= 3.95
(d), N= 22, NN= 3.91 (e), and N= 22, NN= 4.09 (f).
Fig. 2 a. Median frequency, ωmed, versus average

number of nearest neighbors, NN . Two regimes exist.
For NN<2, ωmed is constant (line is constant fit). For
NN>2, ωmed increases linearly with NN (line is a linear
fit). In b-d, NN in different sample-types is indicated by
plotting NN<1.8 as black squares, 2.2<NN<2.8 as red
circles, 3.2<NN<3.8 as blue triangles, 4.2<NN as green
diamonds. Lines are best constant fits. b. ωmed versus
number of particles, N. c. ωmed versus orientational order
parameter, ψ6. d. ωmed versus average total nearest
neighbor spring constant, k. e. ωmed versus Perimeter
Length, i.e., the contour length of cluster exterior. f.
ωmed plotted versus the fraction of soft modes, i.e., the
fraction of modes that cost little to no energy.
Fig. 3 a. Median frequency, ωmed, plotted versus

average number of nearest neighbors, NN , from simula-
tions of random matrices. b. Median frequency, ωmed,
plotted versus number of particles, N, from random ma-
trices with NN= 1 (closed squares), 2 (open circles),
3 (solid circles), 4 (open triangles), 5 (solid triangles),
6 (open squares), 7 (solid squares), 8 (open diamonds),
and 9 (solid diamonds).
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