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Quantum simulation is a highly ambitious program in cold atom research currently being pursued
in laboratories worldwide. The goal is to use cold atoms in optical lattices to simulate models for un-
solved strongly correlated systems, so as to deduce their properties directly from experimental data.
An important step in this effort is to determine the temperature of the system, which is essential
for deducing all thermodynamic functions. This step, however, remains difficult for lattice systems
at the moment. Here, we propose a method based on a generalized fluctuation-dissipation theorem.
It does not rely on numerical simulations and gives a universal thermometry scheme for quantum
gas systems including mixtures and spinor gases, provided that the local density approximation is
valid.

At present, there is a worldwide experimental effort
to simulate theoretical models for strongly correlated
quantum systems using cold atoms in optical lattices[1–
5]. If successful, these simulations will provide detailed
thermodynamic information for many models whose so-
lutions are unknown, even though some of them (such
as 2D fermion Hubbard model) have been studied for
decades. To deduce the thermodynamic properties of
these models directly from experiments, it is necessary
to determine three quantities accurately : the density
n, chemical potential µ, and temperature T [6, 7]. The
recent experiment of Cheng Chin’s group[8] using the
in-situ density profile to identify directly the thermody-
namic phases of the boson Hubbard model is a very im-
portant step toward realizing the full power of quantum
simulation[6]. The prospect of this realization is further
enhanced by the impressive improvement in resolution of
density imaging recently developed in Markus Griener’s
group[9]. The next crucial step is to develope an accurate
means of determining the temperature.

Often, the temperature of a lattice gas is estimated
by assuming the lattice is turned on adiabatically. One
then equates the entropy of the final state Sf (Tf ) to that
of the initial state Si(Ti) (i.e. the state before the lat-
tice is switched on), and then deduces the final tempera-
ture Tf from the initial temperature Ti through this re-
lation. This procedure neglects intrinsic heating caused
by spontaneous emission as the optical lattice is turned
on and during the time the experiment is performed[16].
To make matters worse, the entropy function Sf (T ) of
many systems of interest remains unknown.

For quantum gases in a single trap without an optical
lattice, the temperature can be deduced from the density
profile at the surface, which has the Boltzmann form. In
principle, one can apply the same method to lattice quan-
tum gases, since interaction effects become unimportant
near the surface. However, an accurate determination
requires repeating the experiment many times in order
to achieve a good signal to noise ratio. To get around

this, many experimental studies resort to the aforemen-
tioned adiabatic assumption to determine temperature.
However, this relies on numerical input for the entropy of
the strongly interacting system in the lattice Sf (Tf ), the
exact form of which is unknown in many models of in-
terest. It is thus desirable to have an alternative scheme
which is free from all the problems mentioned above. We
also note that by studying the density at the surface, one
can not determine whether the entire sample is in global
equilibrium.

In this paper, we present a new scheme to determine
the temperature of trapped quantum gases based on the
fluctuation-dissipation theorem for non-uniform systems.
This method applies to all quantum gas systems (sin-
gle component gases, mixtures, spinor gases). Compared
with traditional schemes, it has a number of advantages.
(1) It is based on general thermodynamic principles and
is model independent; (2) it makes use of the density of
the whole sample, and hence does not suffer the signal
to noise problem for thermometry based on surface den-
sities; (3) Unlike traditional methods, our scheme can
determine whether the whole system is in global equilib-
rium.

A. The proposal: We begin with two basic as-
sumptions used in most experiments on quantum gases
which have been justified in many cases. The first is
that the density n(r) of a quantum gas in a trap V (r)
can be calculated in the grand canonical ensemble , i.e.
n(r) = n(r;T, µ), where

n(r;T, µ) =
Trn̂(r)e−β(Ĥ+V̂−µN̂)

Tre−β(Ĥ+V̂−µN̂)
≡ 〈n̂(r)〉T,µ. (1)

where β = 1/(kBT ), Ĥ is the Hamiltonian without trap-
ping potential, V̂ =

∫
d3rV (r)n̂(r), T is the tempera-

ture and µ is the chemical potential. The second is that
n(r;T, µ) is given accurately by the local density approx-
imation (LDA),

n(r;T, µ) = no(µ(r), T ), µ(r) = µ− V (r), (2)
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FIG. 1: Demonstration of our scheme. Blue clouds represent
Q samples in the repeated experiments. Magenta grids rep-
resent the optical lattice. The density of the ith sample at
position r is represented as n(i)(r). Azimuthal averaging of

n(i)(r) in each sample is done in the region represented by the
red ring to obtain ζ(ρ) and η(ρ).

where no(ν, T ) is the density of a homogeneous sys-
tem with hamiltonian Ĥ and chemical potential ν, i.e.

no(ν, T ) = Tre−β(Ĥ−νN̂)N̂/(ΩTre−β(Ĥ−νN̂)), and Ω is
the volume of the homogenous system. For LDA to be
valid in lattice quantum gases, it is necessary that the
variation of the trapping potential between neighboring
sites is small compared with the hopping matrix element
[11]. Eq.(1) implies

kBT
∂〈n̂(r)〉
∂µ

=

∫
dr′ [〈n̂(r)n̂(r′)〉 − 〈n̂(r)〉〈n̂(r′)〉] , (3)

where 〈...〉 = 〈...〉T,µ. For an isotropic harmonic trap
V (r) = 1

2Mω2r2 with frequency ω and r = |r|, Eq.(3)
becomes

− kBT

Mω2r

∂〈n̂(r)〉
∂r

=

∫
dr′ [〈n̂(r)n̂(r′)〉 − 〈n̂(r)〉〈n̂(r′)〉] ,

(4)
or simply

− kBT

Mω2r

∂〈n̂(r)〉
∂r

= 〈n̂(r)N̂〉 − 〈n̂(r)〉〈N̂〉. (5)

Eq.(5) suggests a convenient way to determine temper-
ature. Suppose we repeat an experiment Q times, label-
ing the measured quantities of each sample by the super-
script i = 1, 2, 3, ...Q, as shown in Fig.1. Let n(i)(r) be
the density profile of the i-th sample, andN (i) =

∫
n(i)(r)

be the total number of particles in that sample. The aver-
ages of these quantities over all Q samples will be denoted
as n(r) and N , where x ≡ ∑Q

i=1 x
(i)/Q. In the limit

where Q >> 1, Eq.(5) can be written as L(r) = R(r),
where R(r) = n(r)N − n(r) N , or

R(r) = Q−1

Q∑
i=1

n(i)(r)N (i) +Q−2

Q∑
i,j=1

n(i)(r)N (j); (6)

L(r) = −Q−1

Q∑
i=1

kBT
(i)

Mω2r

∂n(i)(r)

∂r
. (7)
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FIG. 2: Density profile in the trap. Red dots: Ensemble
averaging over 2000 configurations. Blue boxes:LDA. Black
crosses: Exact density in the trap.

That we label temperature T with a superscript i is be-
cause in real experiments, there are fluctuations in tem-
perature in each of the samples due to the initial evapo-
ration process. In the following, we shall assume that the
temperature fluctuations from sample to sample are suf-
ficiently small compared to the mean temperature that
they can be ignored. In this case, we can set T (i) to its
mean value, which we simply denote as T , and Eq.(7)
becomes

L(r) = TL(r), L(r) = − kB
Mω2r

∂n(r)

∂r
. (8)

Eq.(5) then implies T = R(r)/L(r) at any position r.
There is, of course, the practical matter of how many

samples is needed to average over to reach the thermal
average. A very large value of Q will not be practical. To
achieve fast convergence, one can suppress the noise by
averaging over a ring of thickness ε. This is justified since
all points on the same ring in an isotropic trap have iden-

tical chemical potential. Applying 1
Ω(ρ)

∫ ρ+ε
ρ

dρρ
∫ 2π

0
dθ

on both side of Eq.(5), it results in a function (say,

in the 2D case) ζ(ρ) =
∫ ρ+ε
ρ

η(ρ′)ρ′dρ′/Ω(ρ), where

η(ρ) =
∫ 2π

0
dθ n(ρ, θ) is the azimuth integrated density

at radius ρ, Ω(ρ) = π[(ρ+ ε)2−ρ2] is the area of the ring
being averaged over, and (ρ, θ) ≡ r are polar coordinates.
Eq.(5) can be written as

T = R(ρ)/L(ρ), (9)

R(ρ) = ζ(ρ)N − ζ(ρ)N, (10)

L(ρ) = −
(

kB
Mω2Ω(ρ)

)∫ ρ+ε

ρ

ds
dη(s)

ds
. (11)

Eq.(9) holds for all radii ρ. In the 3D case, the quan-
tity most easily accessible is the column integrated den-
sity. The corresponding expressions for the tempera-
ture are found by replacing ζ(ρ) and η(ρ) by their col-
umn integrated analogs a(ρ) and b(ρ), where a(ρ) =
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FIG. 3: Compressibility (left) and number fluctuations (right)
in the trap. Red dots: averaging over 50 configurations. Black
crosses: Exact results in the trap. Blue boxes: LDA.

∫ ρ+ε
ρ

ρ′b(ρ′)dρ′/Ω(ρ), b(ρ) =
∫ 2π

0
dθ
∫
dz n(ρ, θ, z), and

(ρ, θ, z) are cylindrical coordinates.
To illustrate the feasibility of Eq.(9), we consider a

2D ideal Fermi gas in a square lattice with Hamiltonian
Ĥ = −t∑〈R,R′〉,σ c

†
R,σcR′,σ confined in harmonic poten-

tial V̂ = 1
2

∑
RMω2R2c†RcR with frequency ω. Here, R

is the lattice site index, t is the hopping matrix element,
〈R,R′〉 denotes neighboring sites, and c†R,σ creates a
fermion at site R with spin σ. The equilibrium density of
this non-uniform system is 〈n̂(R)〉 =

∑
α |uα(R)|2f(Eα),

where f(x) = (e(x−µ)/kBT + 1)−1 is the Fermi distri-
bution function, Eα and uα(R) are eigen-energies and
eigen-functions of the system H + V .

In Figure 2, we show the equilibrium density of a sys-
tem with temperature T/t = 0.1 and a chemical potential
µ adjusted so that the number of particles is N = 1200.
We also show on the same plot the LDA result, which
differs from the grand canonical result by less than 0.1%
and is invisible in the figure [12]. To generate an equi-
librium ensemble, we start with an arbitrary assignment
of 0 and 1 of the occupation numbers {nα} of the en-
ergy levels {Eα} up to a very large cutoff Λ, and evolve
the set {nα} using a Monte Carlo scheme. To verify that
the resulting states compose an equilibrium ensemble, we
calculated the average the occupation numbers nα, and
confirmed that they match their correct values (given
by Fermi distribution) to 99.9% accuracy. Moreover, we
ensured that there are no correlations between the occu-
pations of different energy levels, as must be true for an
equilibrium ideal gas.

Using this equilibrium ensemble, we randomly selected
Q configurations, which corresponds to Q measured sam-
ples in experiments. The level occupation of these config-

urations will be labeled as {n(i)
α }, i = 1 to Q. The analogs

of the experimentally measured density and number fluc-
tuation at R are then

n(R) =
∑
α |uα(R)|2nα,

n(R)N − n(R) N =
∑
α |uα(R)|2(n2

α − nα2), (12)

where nα = Q−1
∑i=Q
i=1 n

(i)
α and n2

α = Q−1
∑i=Q
i=1 n

(i)2
α .

The density profile after angular averaging n(ρ) obtained
from averaging over Q = 50 samples is shown in Figure
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FIG. 4: Linear fit for {L(ρ),R(ρ)} to extract T . Blue dots are
the results of L(ρ) andR(ρ) from averaging 50 configurations.
Blue straight line is the fitting results. Red straight dashed
line represents the real temperature T = 0.1t.

2 together with the LDA result. The differences between
these two densities are less than 0.1% and is invisible
on the plot. From the “measured” density, we construct
the quantities (R(ρ),L(ρ)). After angular averaging, the
radial dependence is shown in Figure 3 [14]. Figure 4 dis-
plays the pairs (R(ρ),L(ρ)) in the L−R plot, which form
a straight line as Eq.(9) predicts. Using these 50 sam-
ples, the temperature obtained from the slope of Figure
4 agrees with the actual temperature within 3%. If we
increase Q to 200, the accuracy in temperature increases
to 1%. We have repeated our calculation for the same
system at lower temperature T/t = 0.02 and have found
the same accuracy in temperature determination.

We stress that the angular averaging is crucial for our
scheme. Due to the self-averaging property of the equi-
librium ensemble, the angular average enhances signal to
noise significantly, and amounts to a significant increase
in the number of configurations averaged. The high accu-
racy of temperature determination by averaging only 50
samples makes our scheme practical. We would also like
to point out that if the system is not in global equilib-
rium, but was able to establish different temperatures in
different parts of the sample[13], then the points in the
R-L plot will fall onto a few straight lines with different
slopes.

B. Fluctuations in µ and T : In current experiments,
the density profile of an atomic gas is obtained by averag-
ing over many samples, each of which has slightly differ-
ent particle number and energy due to the preparation
process, which in turn lead to slightly different chemi-
cal potentials and different temperatures. However, it is
well known that the density profile averaged over these
samples are well described by the prediction of the grand
canonical ensemble with chemical potential µ and tem-
perature T obtained by averaging over all these samples.
The reason is that as long as the fluctuations in particle
number and energy (∆N and ∆E) are much less than
their mean, denoted as N and E, different samples are
simply members of different grand canonical ensembles
with slightly different chemical potentials and temper-
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atures. Thus, averaging over the experimental samples
is the same as averaging over different canonical ensem-
bles of slightly different chemical potentials and temper-
atures. In the case ∆µ << µ and ∆T << T , the latter
can be well approximated by the average of a single grand
canonical ensemble with chemical potential µ and tem-
perature T .

To demonstrate the effect of fluctuations in µ and T
(which are caused by the preparation process), we gen-
erated density profiles of equilibrium ensembles at differ-
ent temperatures while keeping µ and ω fixed. We find
that with 1% (5%) temperature fluctuations, the accu-
racy for temperature determination after averaging 50
samples remains at 5% (10%). We repeated our calcu-
lations for similar fluctuations in µ (which amounts up
to 5% fluctuations in particle number), and have found
similar results. This shows our scheme is robust against
fluctuations in T and µ on the order of a few percent,
and that Eq.(8) is justified within this accuracy.

C. Local density fluctuation : The scheme de-
scribed in section A is very general. However, it re-
quires measuring density correlations in different posi-
tions in the trap, i.e., Gr,r′ = 〈nrnr′〉 − 〈nr〉〈nr′〉. In
this section, we will describe a simplified version of the
scheme in section A, which makes use of the region in
the trap where only local density correlation are present,
i.e., Gr,r′ = δr,r′

We again consider the 2D case. Eq.(3) can be rewritten
as

TCr = Dr + Fr, (13)

where Cr and Dr are the local compressibility and local
density fluctuation,

Cr = − kB
Mω2r

∂〈nr〉
∂r

, Dr = (〈n2
r〉 − 〈nr〉2)Ω0, (14)

Fr =
∫
r′ 6=r

Gr,r′ is the fluctuation due to the density cor-
relation at different positions. Ω0 is the volume of an unit
cell, which amounts to d3 in the lattice case where d is
the lattice spacing. If the range of Gr,r′ at r happens to
be very short, which may occur if the system at r is in the
Mott phase or the normal phase, then Fr ∼ 0 and Eq.(13)
implies that temperature is simply the ratio T = Dr/Cr.
Thus, if we plot Dr =

∫
θ
Dr against Cr =

∫
θ
Cr, where∫

θ
denotes the angular average, we will find that many

points (Cr, Dr) in the C − D plot fall onto a straight
line while many other points do not. The former comes
from the regions of {r} with short range density corre-
lations, while the latter from regions with longer range
correlations. This suggests a simple way to use local
density fluctuation to determine temperature: As long as
the points (Cr, Dr) fall onto a portion of a straight line,
one can deduce the temperature T from the slope of this
straight line portion[15]. In the case that correlations are
not exactly local, but only exist within a certain length

scale ξ, the integration on the right hand side of Eq.(3)
can be carried out only in the region |r− r′| < ξ, since
non-local correlations vanish for |r− r′| > ξ and give no
contribution to Eq.(3). This can actually improves the
accuracy of our method[16].

Conclusion: We have shown that density fluctuation
measurements give a powerful way to determine the tem-
perature of a trapped gas. It is clear from our derivation
that this method applies to other systems such as mix-
tures and spinor gases. The fact that the temperature
can be determined by the fluctuation at every point in
the sample provides considerable cross checks on the ac-
curacy of the result. Our method can also reveal situa-
tions where different regions of the sample are in equi-
librium within themselves but not with each other. At
present, all methods of thermometry requires the input of
specific theoretical modeling. Our method relies only on
basic postulates of thermodynamics. It is therefore im-
mune from errors of theoretical modeling, and is in line
with the true spirit of quantum simulation, i.e. obtain-
ing information about unsolved models without specific
theoretical input.
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