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Abstract: 

We use meta-materials with extreme anisotropy to solve the fundamental problem of light 

transport in deep sub-wavelength apertures.  By filling a simply-connected aperture with 

an anisotropic medium, we decouple the cutoff frequency and the group velocity of 

modes inside apertures.  In the limit of extreme anisotropy, all modes become purely 

transverse electro-magnetic modes, free from geometrical dispersion, propagate with a 

velocity controlled by the transverse permittivity and permeability, and have zero cutoff 

frequency.  We analyze physically realizable cases for a circular aperture and show a 

meta-material design using existing materials. 
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Meta-materials with extreme properties have generated significant basic physics interest 

in recent years.  Notable examples include epsilon-near-zero materials [1, 2], ultra-low 

refractive-index materials [3], and ultra-high refractive-index materials [4-6].  Many 

photonic structures, such as waveguides, lenses, and photonic band gap materials, benefit 

greatly from the very large index contrast provided by these meta-materials [7, 8].  Meta-

materials with extreme anisotropy offer another level of flexibility.  This has already led 

to novel behaviors and control over material properties, such as nonmagnetic left-

handedness and photonic density-of-states engineering [9-12]. 

 

In this work, we point out that meta-materials with extreme anisotropy can be used to 

solve a fundamental problem that is both of great importance and practical interest in 

nanophotonics: efficient light transport in deep sub-wavelength apertures.  We define a 

sub-wavelength aperture here as simply connected and with both transverse dimensions 

at the sub-wavelength scale.  An example of such an aperture would be a hole made in a 

metal or polar material film with a cross-section that is significantly smaller than the 

operating wavelength [13-15].  While traditional deep sub-wavelength apertures do not 

support guided modes, our approach turns these apertures into waveguides. Such an 

aperture waveguide enables efficient light transport, which is of fundamental importance 

for light manipulation light at deep sub-wavelength length scales, and of practical 

significance for many photonic devices and applications [16, 17]. 

 

In general, the optical behavior of a single aperture is determined by the dispersion 

relation of the corresponding waveguide structure with the same cross-section geometry 
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as the aperture [13].  Sub-wavelength apertures typically transmit light with an efficiency 

that is substantially below unity, because the corresponding waveguide exhibits 

evanescent decay of electromagnetic fields below the cutoff frequency [16].  One simple 

approach for lowering the cutoff frequency and potentially allowing efficient light 

transport in deep sub-wavelength holes is to fill them with a high-index dielectric 

medium.  If the medium is isotropic, however, both the cutoff frequency and the group 

velocity are lowered simultaneously.  In particular, the maximum group velocity is 

reduced leading to slow light operation.  Such a trade-off is not always desirable: 

reducing group velocity can adversely impact signal transport and often increases loss 

thereby lowering light throughput. 

 

Here, we demonstrate that by filling the hole with an anisotropic medium, it is possible to 

decouple the cutoff frequency and the maximum group velocity.  We consider a uniaxial 

anisotropic medium described by its permittivity and permeability tensors 
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0ε  and 0μ  represent the vacuum permittivity and permeability, while ε⊥  ( μ⊥ ) and zε  

( zμ ) are the relative transverse and longitudinal permittivity (permeability).  In the limit 

of extreme anisotropy  ( zε → ∞ , zμ → ∞ ), we show that all modes in a hole become 

purely Transverse Electro-Magnetic (TEM) modes, and that they all have a zero cutoff 

frequency, while retaining a substantial group velocity.  This is a rather novel effect.  In 
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conventional simply connected apertures, by contrast, modes possess a non-zero 

longitudinal electric or magnetic field component and have a finite cutoff frequency. 

 

A hole with perfect electric conducting (PEC) sidewalls, in general, supports either 

purely transverse electric (TE) modes ( )0, 0z zE H= ≠  or transverse magnetic (TM) 

modes ( )0, 0z zH E= ≠ .  When the hole is filled with a dielectric medium that exhibits 

extreme anisotropy ( zε → ∞ , zμ → ∞ ), however, all modes become purely TEM modes 

( )0, 0z zE H= = .  To demonstrate this, the anisotropic medium [Eq. (1)] is placed at the 

core of a cylindrical waveguide (hole) with its axis along the z -direction. Assuming the 

field components are ( )exp i tω∝ −  with frequency ω , we find for z -component of the 

curl equations  

 ( ) ( )0 0,z z z zz z
i E i Hωε ε ωμ μ∇× = − ∇× =H E . (2) 

The left-hand sides of Eq. (2) are finite. Hence, the longitudinal components zE  and zH  

must vanish ( 0zE =  and 0zH = ) in the limit of extreme anisotropy zε → ∞ , zμ → ∞ .  

All modes therefore become purely TEM modes.  This result is valid for holes with 

arbitrary cross-section.  For holes with sidewalls made of any material, our result remains 

valid for the field profile inside the hole. 

 

We now show that the dispersion relation of these modes is free from geometrical 

dispersion and without cutoff.  For this proof, we start again by considering a general 

waveguide (aperture) filled with a dielectric medium described by Eq. (1).  We treat TM 

and TE modes separately in the appropriate limit of ε μ → ∞,z z .  For TM modes, the non-
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zero field components are the transverse electric, magnetic vector fields ⊥E  and ⊥H , and 

the longitudinal electric field component zE ; they satisfy the following equations: 

 ( )0 z zi E
z

ωε ε ε⊥ ⊥ ⊥ ⊥ ⊥
∂∇ × + × = − +
∂ z zH e H E e , (3) 

 0i
z

ωμ μ⊥ ⊥ ⊥ ⊥ ⊥
∂∇ × + × =
∂ zE e E H , (4) 

where ze  is the unit vector in the z-direction.  In Eq. (4), we used that 0zE =  when 

zε → ∞ .  We assume that all field components are ( )exp i zβ∝ , where β  is the wave 

vector.  Equations (3) and (4) can both be split in their transverse and longitudinal parts: 

 0 0,z zi Eωε ε β ωε ε⊥ ⊥ ⊥ ⊥ ⊥∇ × = − × = −z zH e e H E , (5) 

 00, β ωμ μ⊥ ⊥ ⊥ ⊥ ⊥∇ × = × =zE e E H . (6) 

We then combine the expressions for the transverse fields in Eqs. (5)-(6) and arrive at the 

dispersion relation of the TM modes 

 anisovω β= , (7) 

where anisov c ε μ⊥ ⊥= .  A treatment for TE modes yields an expression identical to Eq. 

(7). 

 

The analysis above shows that in an aperture filled with an extreme anisotropic medium 

( zε → ∞ , zμ → ∞ ) all modes are free from geometrical dispersion with a velocity anisov  

(group velocity = phase velocity) that is entirely controlled by the transverse permittivity 

and permeability, and have zero cutoff frequency.  Moreover, all modes are degenerate 

with the dispersion relation of a TEM mode [Eq. (7)].  These properties are quite unusual 

for an aperture with a simply-connected cross-section.  
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For an in-depth analysis of physically realizable cases, i.e., for ε μ,z z  finite but very large 

compared to ε μ⊥ ⊥, , we now consider a hole with circular cross-section of radius 0r .  All 

modes in this system can be calculated analytically. We employ an exact one-

dimensional finite-difference frequency-domain (FDFD) method in a cylindrical 

coordinates ( , , )r zθ  to visualize them [18].  For illustration, we focus on the lowest-order 

TE and TM modes (TE11, TM01, TE21, and TM11).  In calculating the dispersion curves 

( β ,ω ), we assume a uniaxial anisotropic dielectric with ε⊥ =2.13, zε =2130, μ =1 and 

ε =2.13, μ⊥ =1, zμ =1000.  We also calculate the dispersion curves for an isotropic 

dielectric with ε =2.13 and μ =1, as well as for one with ε =2130 and μ =1000. 

 

For a waveguide filled with an isotropic dielectric medium, the dispersion relations for 

the TM and TE modes are well-known [19]: 

 2 2 2 2 2 2 2 2
, ,,

mn mnc TM c TEv vω β ω ω β ω= + = + , (8) 

with v c ε μ=  and cutoff frequencies , mnc TM TMh cω μ ε= , , mnc TE TEh cω ε μ= . The 

constants TMh , TEh  depend on the mode order ( , )m n , according to boundary conditions 

for zE  and zH  at 0r r=  [19].  As shown in Fig. 1a (ε = 2.13  and μ = 1), the dispersion 

curves go to non-zero cutoff frequencies when 0β → .  For large β , all curves approach 

the light line of the isotropic dielectric vω β= .  Figure 1b illustrates the simple approach 

towards lowering cutoff frequency, i.e., filling the hole with an isotropic medium with 

large permittivity and permeability (ε =2130 and μ =1000).  In addition to lowering the 

cutoff frequency, this approach also dramatically reduces group velocity (flat dispersion 
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curves).  By contrast, Fig. 1c describes the dispersion curves in the case of extreme 

anisotropy (ε⊥ =2.13, zε =2130, μ =1 for TM modes and ε =2.13, μ⊥ =1, zμ =1000 for 

TE modes).  All TM (TE) modes exhibit extremely low (near-zero) cutoff frequencies, 

but also retain substantial maximum group velocities. 

 

Figure 2 shows the transverse electric field distributions for the lowest-order modes in the 

anisotropic waveguide (hole).  They are obtained using the FDFD method.  The modes 

have distinct transverse distributions that closely resemble those of the TM (TE) modes 

in an isotropic waveguide [19].  This is expected.  In both the anisotropic and the 

isotropic case, the transverse fields for the TM (TE) modes satisfy 2 2 0TMh⊥ ⊥ ⊥∇ + =H H  

( 2 2 0TEh⊥ ⊥ ⊥∇ + =E E ) and ( )zβ ω⊥ ⊥= − ×D e H  ( ( )zβ ω⊥ ⊥= − ×B e E ).  These equations 

are identical in both cases with the constant TMh  ( TEh ) determined by cross-sectional 

geometry (boundary conditions) and mode order only.  Hence, the field profiles should be 

identical as well for modes with the same TMh  ( TEh ) independent of (an)isotropy.  In the 

extreme anisotropic case (ε⊥ =2.13, zε =2130, μ =1 for TM modes and ε =2.13, μ⊥ =1, 

zμ =1000 for TE modes), however, the modes feature these distinct transverse field 

profiles while having near-zero longitudinal fields, 0zH =  and 0zE  for TM ( 0zE =  

and 0zH  for TE). 

 

Figure 3 shows the cutoff frequency ( , mnc TMω ω=  or , mnc TEω ω= ) for the lowest-order TM 

modes as a function of the ratio between the longitudinal ( zε ) and the transverse (ε⊥ ) 

permittivity when 2.13ε⊥ = , as well as for lowest-order TE modes as a function of the 
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ratio between the longitudinal ( zμ ) and the transverse ( μ⊥ ) permeability when 1μ⊥ = .  

As the ratio increases ( zε → ∞  or zμ → ∞ ), the cutoff frequency goes to zero. We also 

graph the maximum group velocity for each mode and observe that the velocity does not 

vary with the permittivity (permeability) ratio.  It remains at the value of the velocity in 

an isotropic medium with ε =2.13 and μ =1.  This shows the absence of a trade-off, i.e., 

the cutoff frequency can be lowered arbitrarily without affecting the maximum group 

velocity.  The analytic prediction that we made with zε → ∞  and zμ → ∞ , can therefore 

be realized in physical systems by making ε μ,z z  much larger compared to ε μ⊥ ⊥, . 

 

The combination of simultaneous small (finite) transverse permittivity or permeability 

and large (infinite) longitudinal permittivity or permeability is typically hard to find in 

naturally occurring materials.  Meta-material design, however, offers an approach for 

designing a medium with such an extreme anisotropy.  The required anisotropy can be 

obtained by alternating concentric layers of dielectric media with low and high relative 

permittivity.  When the thickness of each individual layer is much less than the operating 

wavelength, we can treat this finely structured material as an effective dielectric with 

 
( ) ( )1 2

1 2
1 2

, 1
1r z f f

f f
ε εε ε ε ε

ε ε
= = + −

− +
 (9) 

where 1ε  and 2ε  are the relative permittivities of the component media, while f  and 

1 f−  are the fractions of the total volume occupied by each of the respective media [20].  

We note that the field distribution of ⊥E for the lowest-order TM01 mode is purely radial 

and thus rε ε⊥ = .  The ratio of zε  to rε  is maximized when 1 2f = , thereby 
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simultaneously achieving a low cutoff frequency while maintaining significant maximum 

group velocity.  Figure 4 shows the ratio z rε ε  as a function of 2ε  (for 1 2.13ε = ).  In 

particular, z rε ε  reaches ~10,000 if we use a dielectric with 2 85,000ε = .  Dielectrics 

with such large relative permittivities exist up to radio frequencies [21]. 

 

As another example, we create a meta-material in the microwave regime that combines 

Ba0.6Sr0.4TiO3, which has a permittivity of 900 at 2 GHz [22], and Teflon ( 2.1ε = ).  We 

find that the cutoff frequency of the TM01 mode, in a 3-mm radius hole filled with such a 

meta-material, is reduced by more than an order of magnitude from 
01, 26.4c TM GHzω =  

(for a hole filled with Teflon 2.1ε = ) to 01
, 1.8TM

c uniaxial GHzω =  (for a hole filled with the 

uniaxial anisotropic meta-material with 4.2rε =  and 451.1zε = ) while the maximum 

group velocity only changes by a factor of two (compared to a group velocity that is more 

than 20 times smaller in Ba0.6Sr0.4TiO3).  It is important to note, in this context, that the 

extremely large values for 2ε  are required only near the cutoff frequency.  In particular, 

to achieve this behavior over a wide range of frequencies, large permittivity values are 

only needed at the low end of the frequency range.  In general, materials with larger 

permittivity are found at lower frequencies.  Thus the approach proposed here can be 

useful in designing apertures with extremely broad bandwidth.  For the fabrication of 

such structures, finally, there exist self-assembly approaches for creating cylindrical 

periodic structures with nano-size periods [23], as well as conformal coating methods for 

achieving thin nanolayers of polymers around nanowires [24]. 
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FIGURES 
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FIG. 1 (Color online). Dispersion diagram ( ),β ω for the lowest-order modes supported 

by a circular waveguide with perfect electric conducting (PEC) walls and filled with (a,b) 

an isotropic dielectric ( 2.13ε =  and 1μ = , 2130ε =  and 1000μ = ) and (c) a uniaxial 

anisotropic dielectric ( 2.13ε⊥ = , 2130zε = , 1μ =  for TM modes, and 2.13ε = ,  

1μ⊥ = , 1000zμ =  for TE modes).  The solid blue, red, green, and cyan curves are for the 

TE11, TM01, TE21, and TM11 modes, respectively. 
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FIG. 2 (Color online). Transverse electric vector field ⊥E  for the lowest-order modes of a 

circular waveguide with PEC cladding and filled with a uniaxial anisotropic dielectric 

with (b,d) 2.13ε⊥ = , 2130zε = , 1μ =  for TM modes, and (a,c) 2.13ε = ,  1μ⊥ = , 

1000zμ =  for TE modes. 
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FIG. 3 (Color online). Cutoff frequency and maximum group velocity for a circular 

waveguide with PEC cladding, and filled with a uniaxial anisotropic dielectric.  Cutoff 

frequency cω  and maximum group velocity v  are graphed as a function of zμ μ⊥  for the 

TE11 (blue curve) and TE21 (green curve) modes and as a function of zε ε⊥  for the TM01 

(red curve) and TM11 (cyan curve) modes. 
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FIG. 4 (Color online). Meta-material design for a dielectric with extreme anisotropy 

based on alternating concentric rings of a high ( 2ε ) and a low ( 1ε ) permittivity dielectric 

medium. z rε ε  for the uniaxial anisotropic meta-material is graphed versus 2ε  (for 

1 2.13ε = ).  Inset shows the cross-section of the aperture and meta-material geometry. 

 
 
 


