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The radiative neutron capture on lithium-7 is calculated model independently using a low energy halo effective
field theory. The cross section is expressed in terms of scattering parameters directly related to theS-matrix
element. It depends on the poorly knownp-wave effective range parameterr1. This constitutes the largest
uncertainty in traditional model calculations. It is explicitly demonstrated by comparing with potential model
calculations. A single parameter fit describes the low energy data extremely well and yieldsr1 ≈−1.47 fm−1.
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Introduction: Low energy nuclear reactions play a crucial
role in Big Bang Nucleosynthesis (BBN), stellar burning and
element synthesis at supernova sites [1–3]. These low energy
reactions also play an important role in testing astrophysical
models and physics beyond the Standard Model of particle
physics. Often the key nuclear reactions occur at energies that
are not directly accessible in terrestrial laboratories. Radiative
proton capture on beryllium7Be(p,γ)8B is one of them —it
is important for boron-8 production in the sun, whose weak
decay results in the high energy neutrinos that are detectedat
terrestrial laboratories looking for physics beyond the Stan-
dard Model. The relevant solar energy, the Gamow peak, for
this reaction is around 20 keV [4]. This necessitates extrapo-
lation to solar energies of known experimental capture cross
sections from above around 100 keV. Theoretical input be-
comes necessary for this extrapolation. Effective field theory
(EFT) is an ideal formalism for this as it provides a model-
independent calculation with reliable error estimates.

In an EFT, one identifies the relevant low energy degrees of
freedom and constructs the most general interactions allowed
by symmetry without modeling the short distance physics.
The interactions are organized in a low momentum expan-
sion. At a given order in the expansion, a finite number of
interactions has to be considered and ana priori estimate
of the theoretical error can be made. Establishing theoreti-
cal errors is crucial due to astrophysical demands [1, 2, 4].
A systematic expansion of interactions is important because
many processes involve external currents, and any prescrip-
tion used in phenomenological models involve some uncer-
tainty. As an example, the cross section forn(p,γ)d at BBN
energies was calculated within EFT to an accuracy of about
1% [5]. Systematic treatment of two-body currents was nec-
essary to achieve this level of precision, and it addressed a
critical need [1] for nuclear theory input in astrophysics.

While applications of EFT to systems withA. 4 nucleons
is well developed, forA & 5 it is still in its infancy. How-
ever, some loosely bound systems, like halo nuclei open new
possibilities. The small separation energy of the valence nu-
cleons in halo nuclei provides a small expansion parameter
for constructing a halo EFT [6]. In Ref [7], electromag-
netic transition in the halo system11Be was considered. The
8B nucleus with a proton weakly bound to the7Be core by

0.1375 MeV is a halo system. Current extrapolation of the
7Be(p,γ)8B cross section to solar energies introduce errors
in the 5− 20% range [4, 8, 9]. A model-independent EFT
calculation would be very useful to estimate the errors in the
extrapolation. In addition, this would be an important stepin
developing EFT techniques for weakly-bound nuclei as has
been accomplished in the few nucleon systems. Experiments
such as those planned at the future FRIB [10] would explore
exotic nuclei near the drip lines where halo systems abound.
Structure and reactions with halo EFT can serve as benchmark
for phenomenological models of nuclei near the drip lines.

We consider the low energy reaction7Li(n,γ)8Li, which
is an isospin mirror to7Be(p,γ)8B. The n-7Li system al-
lows formulating the EFT for the nuclear interactions with-
out the added complication of the Coulomb force. Besides,
7Li(n,γ)8Li is a key process in inhomogeneous BBN models.
Its reaction rate impacts the abundance of7Li and the pro-
duction of carbon-oxygen-nitrogen in the early universe, thus
constraining alternative astrophysical scenarios [11]. Tradi-
tionally 7Li(n,γ)8Li has been calculated in a single-particle
approximation as a7Li core plus a valence neutron interact-
ing via a Woods-Saxon potential, e.g. Refs. [8, 12, 13]. This
approximation breaks down at higher energies when the inter-
nal structure of the7Li core is probed, for example, near the
threshold for7Li(γ,3He)α which is about 0.5 MeV above the
binding energyB≈ 2.03 MeV of the8Li core. We treat the
7Li nucleus as point-like since we work at very low energies.
In the following we show that the capture cross section below
∼ 100 keV is very sensitive to thep-wave effective ranger1,
a result that carries over to the mirror7Be(p,γ)8B reaction.

Interaction: The relevant low energy nuclear degrees of
freedom, here, are the point-like neutron,7Li and 8Li with
spin-parity 1

2
+

, 3
2
−

and 2+ respectively. At low energies the
relevant partial waves in the incomingn-7Li state ares-waves:
3S1, 5S2 in the spectroscopic notation2S+1LJ. The ground
state is a 2+ state that is primarily the symmetric combina-
tion of the possiblep-wave states3P2 and5P2 [14]. Conserva-
tion of parity implies that the reaction7Li(n,γ)8Li proceeds
through the electric dipole transition E1 at lowest order.

The leading order interactions fors-wave contain no deriva-
tives. The two-component spin-1

2 neutron fieldN(x) and four-
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component spin-32
7Li field C(x) can be combined into the3S1

and5S2 states using the Clebsch-Gordan coefficient matrices
Fi , Qi j asNTFiC andNTQi jC respectively. The vector index
in Fi relates to the three magnetic quantum numbers in the spin
S= 1 channel. The symmetric, traceless matricesQi j relate to
the five magnetic quantum numbers in the spinS= 2 channel.
We write thes-wave leading order interaction Lagrangian as

L
(s) = g(1)(NTFiC)

†(NTFiC)+g(2)(NTQi jC)
†(NTQi jC), (1)

where a single momentum-independent interaction in each of
the3S1 and5S2 channels was kept. The higher derivative terms
are suppressed at low energy. The 2×4 Clebsch-Gordan ma-
trices are given as

Fi =−
i
√

3
2

σ2Si , Qi j =−
i√
8

σ2[σiSj +σ jSi], (2)

whereSi’s are spin-12 to spin-32 transition matrices [6] andσi ’s
are the usual Pauli matrices.

+

ig(κ) ig(κ) ig(κ)

+ · · ·iA
(κ)
0 =

iA
(κ)
1 =

ih(κ) ih(κ)

= + + · · ·

ih(κ) ih(κ)

FIG. 1.A (κ)0 is the3S1, 5S2 scattering amplitude.A (κ)1 is the3P2, 5P2

scattering amplitude. Double line is the7Li propagator, single line
the neutron propagator, dashed line the bare dimer propagator.

The interaction in Eq. (1) produces as-wave amplitude
shown in Fig. 1. It is a geometric series, summed to give

iA (κ)EFT(p) =
ig(κ)

1− ig(κ)L(p)
,

L(p) =−i
∫

dD−1q

(2π)D−1

2µ (λ/2)4−D

q2− p2− i0+
=− iµ

2π
(λ+ ip), (3)

where g(κ) corresponds tog(1), g(2) in the respective spin
channels andλ is the renormalization scale. The loop in-
tegralL(p) is evaluated in the power divergence subtraction
scheme [15] where divergences in bothD = 4 and lower
space-time dimensions are subtracted. Matching Eq. (3) to the
low-energy effective range expansion (ERE) amplitude fixes

the EFT couplings asg(κ)(λ) = (2π)/[µ(λ−1/a(κ)0 )] with the

scattering lengthsa(2)0 =−3.63±0.05 fm,a(1)0 = 0.87±0.07
fm [16]. Introduction of the renormalization scaleλ allows for
a systematic expansion of the different terms even though the

final amplitude is independent ofλ [17]. In Ref. [18], initial
state interactions using ERE was also considered.

The final8Li bound state is in ap-wave that we consider
shallow similar to its isospin mirror8B nucleus. The EFT for
shallowp-wave states was formulated in Ref. [6] where it was
shown that, unlikes-wave, it requires not one but two non-
perturbative EFT interactions. The renormalization of loops is
easily accomplished in the dimer formalism. The interactions
in the 3P2 and 5P2 states are constructed by combining the
matricesFi , Qi j and the Galilean invariant velocity difference
vector(vC−vN)k into a p-wave dimer with totalJ = 2. We
write the corresponding interaction Lagrangian as

L
(p) =φ†

i j

[

∆(1)+

(

i∂0+
∇2

2M

)]

φi j

+
√

3h(1)
[

φ†
i j N

TFx(

→
∇

MC
−
←
∇

MN
)yC+h.c.

]

Ri jxy

+π†
i j

[

∆(2)+

(

i∂0+
∇2

2M

)]

πi j

+
h(2)√

2

[

π†
i j N

TQxy(

→
∇

MC
−
←
∇

MN
)zC+h.c.

]

Txyzi j, (4)

whereφi j (πi j ) is the dimer in the3P2 (5P2) channel, and

Ri jxy =
1
2
[δixδ jy + δiyδ jx−

2
3

δi j δxy],

Txyzi j =
1
2
[εxziδy j + εxz jδyi + εyziδx j + εyz jδxi] . (5)

The interactions inL (p) are equivalent to the ones with only
neutron-core short range interactions without a dimer field.
In terms of Feynman diagrams, the four-fermion neutron-core
interaction is replaced in the dimer formulation by a dimer ex-
change, Fig. 1. The non-perturbative iteration of the leading
operators is accomplished by “dressing” the dimer propaga-
tor with nucleon-core loops. For a given spin-channelκ = 1
(3P2) or κ = 2 (5P2) the dressed dimer propagator, which is
proportional to the elastic amplitude, reads

iD(κ)(p0,p)Ri jmn =
iRi jmn

∆(κ)− 1
2µζ2+ 2h(κ)2

µ f (p0,p)
,

f (p0,p) =
1
4π

(

ζ3− 3
2

ζ2λ+
π
2

λ3
)

, (6)

whereζ =
√

−2µp0+µp2/M− i0+, M = MN +MC. Match-
ing the EFT amplitudes to thep-wave ERE expansion deter-
mines the coupling pair (∆(κ), h(κ)). Again, only the first two
ERE parameters are kept in the low energy expansion since
EFT requires two operators at leading order.

Radiative capture:The leading order capture cross sec-
tion can be calculated via minimally coupling the photon by
gauging the7Li core momentumpC → pC + ZCeA, where
ZC =3 is the7Li core charge. The E1 contribution comes from
the diagrams in Fig. 2. The center of mass (CM) kinemat-
ics are defined withp (k) the core (photon) momentum and



3

k̂ · p̂= cosθ. Formally we takep∼ γ as the small scale where
γ =
√

2µB≈ 57.8 MeV is the8Li binding momentum. Then at
leading order the Mandelstam variables≈ (MN+MC)

2 = M2

and|k|= k0≈ (p2+ γ2)/(2µ). We get for the CM differential
cross section

dσ
dφdcosθ

=
1

64π2s
|k|
|p| |M |

2≈ 1
64π2M2

p2+ γ2

2µp
|M |2. (7)

(a) (b)

(c) (d)

FIG. 2. Capture reactions7Li(n,γ)8Li. Wavy lines represent pho-
tons. “· · · ” represents initial states-wave interaction.

The capture from the initial state5S2 to the5P2 final state
(spin channel 2) dominates due to the larger initial state scat-

tering lengtha(2)0 > a(1)0 . The divergence in diagram(b) is
canceled by(d) [7]. Summing over all polarizations and spins

|M (5P2)|2 = 5

(

ZCMN

M

)2 64π αM2|h(2)
√
Z (2)|2

µ

×
[

|1+X|2− p2sin2 θ
p2+γ2

(

2γ2

p2+γ2+X+X∗
)]

,

X =
i

−1/a(2)0 − ip
(p− i

2
3

γ3− ip3

p2+ γ2 ), (8)

with α = e2/(4π), the dimer polarization sum∑εi j ε∗xy = Ri jxy

[19] and the wave function renormalizationh(2)2|Z (2)| =
2π/|3γ+ r(2)1 |, wherer(2)1 is the effective range in the5P2 scat-
tering amplitude.Z (2) is defined as the residue at the pole in
the dressed dimer propagatorD(2)(p0,p). The capture from
3S1 to 3P2 state has the same exact expression as Eq. (8) ex-

cept thata(2)0 , r(2)1 , andZ (2) are replaced by the corresponding
parameters in the spin channel 1. The differential cross sec-
tion averaged over initial spin states is

dσ
dcosθ

=
1

32πM2

p2+ γ2

2µp
1
8
|M (5P2)|2+ |M (3P2)|2

2
, (9)

taking the8Li nucleus as a symmetric combination(|3P2〉+
|5P2〉)/

√
2 of final states. The total cross sectionσ(p) is cal-

culated with a straightforward integration over the angleθ.
The parameters inσ(p) can be determined from elasticn-

7Li scattering data and8Li binding energy. However, thep-

wave effective ranger(κ)1 is not known accurately. This is the

main theoretical uncertainty at this order. Changing the effec-

tive ranger(κ)1 modifiesZ (κ) and moves the cross section up or
down by a multiplicative factor. In traditional potential model
calculations, the parameters are determined by reproducing
the 8Li binding energy. However, this does not constrain the
effective range and other parameters of the ERE. For example,
in a Woods-Saxon potentialV(r) =−v0[1+exp( r−Rc

ac
)]−1 dif-

ferent choices for the depthv0, rangeRc, diffusivenessac can
be made to reproduce the known8Li binding energy. This
however produces different effective ranges, and constitutes
an irreducible source of error in the theoretical calculations.

Comparing the contributions to the capture cross section
from the two spin channels analytically, we get

σ(5P2)

σ(5P2)+σ(3P2)

∣

∣

∣

p=0
=

(3−2a(2)0 γ)2

(3−2a(2)0 γ)2+(3−2a(1)0 γ)2
≈ 0.81,

(10)

using the same effective ranger1 in both spin channels. This
ratio is close to the experimentally observed ratio [20]. From
Eqs. (8), (9) one can see that the total cross section at low

energy is not independently sensitive tor(2)1 andr(1)1 . This is
confirmed by our fit to data.

In Fig. 3, we compare potential model calculations using
Tombrello’s [12], and Davids-Typel’s [8] parameters to EFT
curves. At low energy the potential model results can be re-
produced in EFT with a small variation in the effective range
−0.46 fm−1 ≤ r1 ≤ −0.3 fm−1. At higher energies they dif-
fer since potential models include ERE parameters beyond
the scattering length and effective range. A fit to data from
Ref. [21] in the energy rangeEn ∼ 2− 700 eV gives an ef-
fective ranger1 = −1.83 fm−1 with only the spin channel 2
contribution andr1 = −1.47 fm−1 with both spin channels
1 and 2. Both ther1 values are compatible with the Wigner
bound [22] which, for a nucleon-core interaction shorter than
3 fm restrictsr1 to be smaller than around−1 fm−1. Follow-
ing Ref. [21], their data and the theory curves in the right panel
in Fig. 3 were divided by the known experimental branching
ratio 0.89 to the ground state and compared to a few other
available data [23–25]. Ther1 was fitted to the unscaled data
for transition to the ground state as appropriate. It is clear that
the theory error in the low energy extrapolation comes from
the uncertainty in the effective range at leading order.

Conclusions: Using a model-independent formalism we
demonstrated and quantified the theoretical uncertainty inthe
7Li(n,γ)8Li calculation associated with phenomenological
potentials in the single particle approximation. The leading
order result depends on thep-wave effective range parameter
r1 that is poorly known. Without detailed knowledge about
this parameter, model calculations deviate from data at low
energy. We extract this effective range parameter by fitting
our analytic form to data.

It is important to stress that this sensitivity tor1 at low ener-
gies is a consequence of having two operators for shallowp-
wave states at leading order. Therefore the conclusions of the
present work also apply to the7Be(p,γ)8B reaction. Coulomb
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FIG. 3. Potential model curves: (blue) long-dashed curve from
Davids-Typel [8], (red) dashed curve from Tombrello [12]. Top
panel: (black) solid curve EFT withr1 = −0.3 fm−1, (black) dot-
dashed curve EFT withr1 = −0.46 fm−1. Bottom panel: (black)
solid curve EFT withr1 fitted to data.

interactions inp+ 7Be scattering and7Be(p,γ)8B reaction is
under investigation [26].

The EFT expression for7Li(n,γ)8Li capture is consistent
with low energy data, which is lower than model calcula-
tions [8, 12] as shown. Since this reaction effects7Li abun-
dances, the impact of the uncertainty inr1 in inhomogeneous
BBN can be explored using our analytic expression.

At higher order in the EFT expansion, the cross section
would get corrections from two sources: higher order initial
and final state interactions, and two-body currents. The for-
mer can be related to the ERE. At the very low energy, it
is the final state interactions, which modify the wave func-
tion renormalization constants, that are important. At next-
to-next-to-leading order the shape parameter associated with
p-wave interaction contribute [6, 26]. In addition, at higher

order two-body currents such asEi(NFjC)†[NFx(
→
∇ /MC−

←
∇

/MN)yC]Ri jxy, whereEi is the electric field, contribute. These
operators are not constrained by elastic scattering. A higher
order EFT calculation would reduce theoretical errors though
at the expense of additional parameters. This is not necessar-
ily a drawback as what we gain is a model-independent un-
derstanding of the sources of higher order contributions, and a
more detailed knowledge about the kind of experimental input
that is required to better constrain the low energy theory.
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