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We computationally study shear-induced segregation of different sized particles in vertical chute
flow. We find that for low solids fractions, large particles segregate toward regions of low shear rates
where the granular temperature (velocity variance) is low. As the solids fraction increases, this
trend reverses, and large particles segregate toward regions of high shear rates and temperatures.
We find that this is a global phenomenon: local segregation trends reverse at high systems solids
fractions even where local solids fractions are small. The reversal corresponds to the growth of a
single enduring cluster of 30-60% of the particles that we propose changes the segregation dynamics.

PACS numbers: 47.57.Gc, 81.05.Rm
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FIG. 1. (Color online) (a) Sketch of a vertical chute. (b)-(d) Profiles of kinematic quantities for four mixtures once steady state
is reached (t=50s for 〈f〉=0.21 and 0.34 and t=400s for 〈f〉=0.47 and 0.60). (b) Average streamwise velocity w, (c) Average
granular temperature T and (d) Average solids fraction of the mixture f . (e)-(h) Snapshots of two mixtures at t=0s and steady
state. (e) 〈f〉=0.21 at t=0s (f) 〈f〉=0.21 at t=50s (g) 〈f〉=0.60 at t=0s and (h) 〈f〉=0.60 at t=400s. 2mm particles: blue
(dark); 3mm particles:green (light) .

Granular mixtures of particles differing in size, density, or other particle property tend to demix or segregate
into often brilliant patterns. This gives rise to a number of interesting pattern formation problems in nature [1] and
challenges for powder processing industries [2]. Several different factors influence segregation behaviors including
gravity, gradients of shear rates and granular temperature (velocity variance) T . Of these, segregation associated with
gravity has been studied the most [3–6], though this is often accompanied by shear rate gradients. The influence of
shear rate gradients on segregation, particularly for denser configurations, is much less understood [7].
Shear rate gradients drive gradients in T as well as gradients in the solids fraction f . In sheared dilute energetic

granular mixtures all particles accumulate in the regions of low shear rate γ̇ corresponding to regions of low T and
high f , and larger particles do so more efficiently (e.g., [8–11]) leaving the latter segregated at the regions of lowest γ̇
and T , highest f . This has been successfully modeled using kinetic theory [8, 11–14] for sufficiently sparse flows. For
moderate solids fractions, kinetic theory has been shown to overpredict segregation trends, though still qualitatively
reproduce the outcome [10]. For sufficiently high solids fractions f , there is evidence the segregation trend reverses,
that larger particles segregate to regions of higher shear rates and higher T ’s [15, 16], though the evidence was obtained
primarily from systems where simultaneous advection complicated the outcome. When complex advection combines
with even relatively simple segregation tendencies, the underlying mechanisms are hard to discern [16].

In this paper, we investigate segregation associated with a shear rate gradient as it varies with the system solids
fraction 〈f〉 [17]. We use a vertical chute [Fig. 1(a)] to isolate the effect of a shear rate gradient on segregation. As
shown for other shear-induced effects [18–20], this geometry is ideal for studying the effect of shear rate gradients
on segregation because of its simple geometry but inhomogeneous flow structure. We find that while the local solids
fraction f and other kinematics are non-uniform, the segregation trend varies with the global solids fraction 〈f〉. For
systems of low 〈f〉, large particles accumulate within low-γ̇, low-T , high-f regions, in quantitative agreement with
predictions using kinetic theory. However, for systems of high 〈f〉, the opposite occurs, and our attempt to match
kinetic theory with our results fails dramatically. We find this change in segregation behavior is associated with
the system structure: as 〈f〉 increases, the system structure changes from one dominated by binary collisions to one
dominated by one cluster that can involve > 60% of the particles and span the system. As such, the cluster size may
be an order parameter characterizing a phase change of the system of which the segregation behavior is a signature.

For our simulations we use the Discrete Element Method (DEM) [21] in 3-D. Particle-particle and particle-wall
contact forces are represented using a nonlinear force model based on Hertzian and Mindlin contact theories and
damping components based on the derivation in Tsuji et al. [22, 23]. The contact forces also obey the Coulomb law
of friction. For the results described here, we use 50/50 mixtures (by weight) of spherical particles 2 and 3 mm in
diameter with a polydispersity of 10% to impede crystallization. We vary 〈f〉 from one simulation to the next: 〈f〉
= 0.21 - 0.60. (The number of particles in each simulation N varies from 2976-8089.) The boundary conditions we
use are those of a vertical chute of dimensions D =40 mm, W =50 mm and L = 50 mm in the x, y, and z directions,
respectively [see Fig. 1(a)]. The boundaries are periodic in the z- (vertical) and x- directions. There is one set of
vertical side walls (in the y- direction), that are roughened using close-packed 2 mm spheres. We denote the velocity
and components as u=ux+vy+wz according to directions noted in Fig. 1(a).

For each simulation, the particles are arranged randomly in the chute and then released with small random veloc-
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FIG. 2. (Color online) Segregation kinematics of three systems with 〈f〉′s as noted for the mixture (M) [green(gray)] and large
(L) [red(thin black)] and small (S) [blue(thick black)] particles. Row 1: f i(y) at steady state (SS). Rows 2 and 3: normalized
segregation fluxes f i∆ṽi(y) as defined in text averaged over t= 0.5 - 1 s (row 2) and 1 - 10s (row 3). Row 4: normalized net
outward average segregation fluxes for large particles 〈fL∆ṽL〉o as a function of normalized time t̃.

ities. After their release, particles collide with one another and with the vertical walls as they accelerate downward.
Dissipation of energy via interparticle and wall-particle interactions limits the velocity throughout the cell. Steady-
state velocities are reached within O[10] s. The steady-state kinematic profiles of the granular mixtures are similar to
those in monosized system measured in the physical and computational experiments (e.g., Refs. [18, 19, 24]). At the
highest solids fractions, the vertical velocity profile w resembles a plug flow; at the lower solids fractions, the velocity
is higher and the profile is roughly parabolic [Fig. 1(b)]. In all cases, the granular temperature T is highest near the
walls where the shear rate γ̇ = dw/dy is the greatest, and generally higher for lower values of 〈f〉 [Fig. 1(c)]. Regions
of low T and low γ̇ correspond to regions of high f [Fig. 1(d)].

We find that segregation in our sparsest simulations proceeds similarly to segregation reported in other sparse
systems (e.g. [8, 11]). All particles move to regions of low-T , low-γ̇, high f in the center of chute, though large particles
do so more efficiently [See Fig. 1 (e)-(f)]. In contrast, in our densest simulations, the larger particles segregate to the
region of high T and γ̇ near the walls [See Fig. 1 (g)-(h)]. To investigate these trends more quantitatively, we plot the
solids fraction profiles f i of each component i and the mixture f for the steady state for three representative solids
fractions – 〈f〉 = 0.21, 0.47, 0.60 – in Fig. 2, row 1. These plots indicate a gradual change: as 〈f〉 increases, the large
particles are increasingly repelled from the central region of low-T and -γ̇ to one where the regions of high-T and γ̇ at
the boundaries. For the systems with the highest values of 〈f〉, the segregation in the center is quite small, apparently
due to the slow dynamics in the center of the flow.

To investigate the dynamics that give rise to these steady-state concentrations, we plot the normalized segregation
flux for these systems f i∆ṽi = f i(vi−v)/〈w〉 where 〈w〉 is the steady-state spatially-averaged vertical velocity. We find
that immediately following the release of the particles (t = 0.5−1s) the large particles segregate to the center of the cell
for all cases except for the highest solids fractions investigated, (e.g., 〈f〉 = 0.60 in Fig. 2, row 2). However, when these
dynamics are viewed over a slightly longer period of time (t = 1−10s), the segregation flux reversal occurs at moderate
〈f〉’s (e.g., 〈f〉 = 0.47 in Fig. 2, row 3). We note this reversal occurs for moderate-to-high 〈f〉’s even where the local
value of f is relatively low. To calculate an average measure of segregation of each component i toward high-T , high-γ̇
regions, we compute the average flux of each component toward the walls: 〈f i∆ṽi〉o ≡ 〈f i∆ṽi〉y>0 − 〈f i∆ṽi〉y<0.
In Fig. 2, row 4, we plot average net outward segregation fluxes of large particles 〈fL∆ṽL〉o vs. normalized time
t̃ = t〈w〉/W for the three systems discussed above. The results illustrate that the segregation of large particles toward
low-T , low-γ̇ regions at 〈f〉 = 0.21 occurs at roughly the same (non-dimensionalized) rate as the segregation of large
particles toward high-T , high-γ̇ regions at 〈f〉 = 0.60. Further, in the intermediate system 〈f〉 = 0.47, the cross-over
from 〈fL∆ṽL〉o < 0, to 〈fL∆ṽL〉o > 0 at t̃ ≈ 50 is clearly indicated.

For physical insight, we compare our data with predictions from kinetic theory with non-equipartition of granular
temperature [11, 13], summarized in Ref. [16]. Specifically, we consider the “diffusion velocity”, δv ≡ vS − vL. Figure
3 contains theoretical predictions of δv vs. y based on local kinematics and simulation results for a few values of 〈f〉
for t = 0.5− 1s . The results agree qualitatively and quantitatively for the lowest system solids fractions, e.g., 〈f〉 =
0.21 [Fig. 3(a)], though this agreement is not as good for higher 〈f〉 as low as 0.34 [Fig. 3(b)]. Further, as shown in
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FIG. 3. (Color online) Average segregation velocity δv = vS − vL at 0.5-1 s from simulation results and from kinetic theory
[11, 13], derivation summarized in Ref. [16] for: (a) 〈f〉 = 0.21; (b) 〈f〉 = 0.34; (c) 〈f〉 = 0.55; (d) 〈f〉 = 0.60.

 

FIG. 4. (Color online) (a) Sketch illustrating 4 clusters with 2 singletons. (b)-(c) Probability distribution function of Nc/N for
(b) 〈f〉 = 0.21 and 0.37, and (c) 〈f〉 = 0.47 and 0.60. (d)-(e) Time dependence of the maximum cluster size for (d) 〈f〉 = 0.21
and 0.37, and (e),(f) 〈f〉 = 0.47 and 0.60.

3(c) and (d), in the denser systems, 〈f〉 = 0.55 and 0.60, the diffusion velocity predicted from kinetic theory is in
the opposite direction (and significantly greater in magnitude) than that directly measured from the simulations. We
found similar results at later times, though the qualitative disagreement between theory and simulation results occurs
at lower values of 〈f〉 where the segregation direction reverses.

Since current formulations of kinetic theory require collisions to be relatively uncorrelated, we hypothesize the
change in segregation direction and the break between results and theory has to do with an underlying change in the
structure of the system. To test this hypothesis, we consider a relatively coarse measure of the system structure, the
size of particle clusters within each system. Here, we define the size of each cluster Nc by the number of particles
connected via interparticle contacts [Fig. 4(a)]. Figures 4 (b)-(c) show the probability distribution function (PDF) of
the normalized cluster size Nc/N at steady state (using data from 1000’s of time steps) for different values of 〈f〉. At
lower values of 〈f〉 (e.g., 0.21 in Fig. 4(b)) the clusters are very small, and the PDF’s exhibit a power law decay. When
〈f〉 increases to 0.37, the slope decreases and the tail of the PDF becomes more complicated. At higher values of 〈f〉
[Figs. 4 (c)], the PDF splits into two parts, one representing relatively small clusters that follows a power law, and
one representing the size of the largest cluster Ncm at each time step. In Figs. 4 (d) - (f), we plot the time dependence
of Ncm/N . For the lowest value of 〈f〉= 0.21, there is no unique largest cluster; many small clusters continuously
form and break apart as mentioned. At 〈f〉 = 0.37, the largest cluster can reach 20%, though it is not stable and
Ncm/N can vary from ∼ 0.01− 0.2, explaining the complicated tail in Fig. 4(b). For relatively large 〈f〉 ≥ 0.47 there
is a unique largest cluster that forms relatively quickly and contains a significant fraction of the particles, though for
intermediate values, e.g., 〈f〉 = 0.47, the initial growth of the largest cluster is slow [Fig. 4 (f)].

We now consider the correspondence between the growth of Ncm/N and the change in segregation trend with
increasing 〈f〉. We plot Ncm/N and 〈fL∆ṽL〉o vs. 〈f〉 in Fig. 5. The results for 〈fL∆ṽL〉o show the segregation flux
transitions gradually from one where the large particles segregate toward low-T , low-γ̇ regions to the reverse, and
that the transition point corresponds at early times to 〈f〉 ∼ 0.5, and at later times to 〈f〉 ∼ 0.42, as also suggested
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FIG. 5. 〈fL∆ṽL〉o (◦), and Ncm/N (×) vs. 〈f〉 calculated for (a) t = 0.5− 1 s for 〈fL∆ṽL〉o and t = 0.75 s for Ncm/N and (b)
t = 1 − 10 s for 〈fL∆ṽL〉o and t = 5 s for Ncm/N . The dashed line indicates 〈fL∆ṽL〉o = 0, and the dash-dot line indicates
Ncm/N = 0.34, the value for 〈f〉 = 0.47 at t̃ ≈ 50, the segregation reversal time indicated in Fig. 2, row 4.

by Fig. 2. Further, it appears the reversal in segregation trends at early and late times coincides with a maximum
cluster size somewhat greater than ∼ 34% of the total number of particles and shifts to the left for slightly later times
as Ncm grows.
To summarize, we find that the kinematics associated with shear rate gradients induce segregation for different

sized particles over a wide range of system solids fractions 〈f〉 and that the direction of segregation of large particles
relative to small particles reverses at a moderate value of 〈f〉. The underlying cause for the reversal appears global;
that is local segregation trends reverse at higher 〈f〉 even where local solids fractions are small. The transition is likely
governed by the global structure of the system rather than a particular value of 〈f〉. Indeed in the results reported
in this paper, we find the point of transition changes as the system evolves to steady state. We further expect it to
depend on details such as particle size distribution [25] as the maximum packing fraction changes. The size of the
clusters we describe is likely related to an interparticle force correlation length ξ whose growth was shown by Lois
et al. [28] to correspond with a transition from sparse to dense flow. They demonstrated that the transitional value
of ξ depends on the interparticle restitution coefficient, which we expect will influence our segregation transition as
well. While the current framework of kinetic theory does not correctly predict dynamics in highly correlated systems,
efforts are being made to extend kinetic theory by explicitly incorporating a correlation lengthscale into the theory
(e.g., Ref. [26]). Alternatively, a new model for segregation recently proposed by Sarkar and Khakhar for single-sized
particles of different densities [27] shows promise as an alternate model for segregation in dense granular flows though
it has not yet been applied to different-sized particles.
We conclude by considering a model proposed by Gray and colleagues for gravity-driven segregation of different

sized particles of identical material density ρ down a plane of inclination θ [4]. The model predicts that the segregation
flux in the direction ζ perpendicular to the average flow should scale as ∼ ψi∂σ/∂ζ − (fi/f)ρgcosθ, where ψi is the
fraction of the local pressure or normal stress σ born by species i. Essentially, gravity acts to drive all particles
downward, and a non-equipartition of normal stress (where ψi 6= fi/f) preferentially allows one species to respond
more efficiently to ∂σ/∂ζ than the other and thus segregates the particles. For sheared high 〈f〉 systems where gravity
does not play a role in segregation, we suggest explicit consideration of the contact stresses σc and kinetic stresses
σk, associated with interparticle contacts and streaming motion of particles, respectively as in Ref. [18]. Then, for
an analogous model to that in Ref. [4] we suggest the segregation flux f i∆ṽi ∼ ψi∂σ

c
yy/∂y + ψk

i ∂σ
k
yy/∂y so that the

negative kinetic stress gradient plays a role analogous to gravity. We are pursuing this framework for its potential to
model shear-induced segregation in dense flows.
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