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We analyze a model of mutually-propelled filaments suspended in a two-dimensional solvent. The
system undergoes a mean-field isotropic-nematic transition for large enough filament concentrations
and the nematic order parameter is allowed to vary in space and time. We show that the interplay
between non-uniform nematic order, activity and flow results in spatially modulated relaxation
oscillations, similar to those seen in excitable media. In this regime the dynamics consists of nearly
stationary periods separated by “bursts” of activity in which the system is elastically distorted and
solvent is pumped throughout. At even higher activity the dynamics becomes chaotic.

PACS numbers:

Colonies of motile microorganisms, the cytoskeleton and
its components, cells and tissues have much in common
with soft condensed matter systems (i.e. liquid crystals,
amphiphiles, colloids etc.), but in addition they show new
phenomena associated with the fact that the constituent
particles are active: they consume and dissipate energy
to fuel internal changes that generally lead to motion.
When active particles have elongated shapes, as seen
in cytoskeletal filaments and some cells, they undergo
orientational ordering at high concentration to form liq-
uid crystalline phases. The theoretical and experimental
study of active materials has disclosed a wealth of emer-
gent behaviors, such as the occurrence of giant density
fluctuations [1], the emergence of spontaneously flowing
states [2], unconventional rheological properties [3] and
new spatiotemporal patterns not seen in passive complex
fluids [4, 5].

In this Letter, we show that active nematic suspen-
sions behave as excitable media, showing relaxation os-
cillations that couple activity to spontaneous pulsatile
flow with quiescent periods in between, similar to bio-
logical pumps. This hydrodynamic phenomenon arises
as a consequence of the existence of multiple time scales
in the system, when the dynamics of the flow lags with
respect to the rate of the active forcing exerted at the mi-
croscopic scale and are thus very different from the large
scale fluctuations previously observed in simulations with
noise and no hydrodynamics [4]. In addition, we see that
the orientational dynamics of the system associated with
nematic ordering can give rise to large-scale swirling mo-
tions resembling those observed in recent motility assay
experiments [6] even in the absence of polar order.

Our system consists of a two-dimensional suspension
of filaments of length ` in a solvent. The filaments are
mutually propelled, for example thorough the action of a
motor cluster that binds pairs of filaments. The dynam-
ical variables in such a system are the particle concen-
tration c, the solvent flow field v and the nematic tensor
Qij = S(ninj − 1

2δij), with S the nematic order param-
eter and n the director field, all of which are allowed to

vary in space and time. The total density of the system ρ
is conserved, so the fluid is assumed to be incompressible.
The total number of active particles is also constant, thus
the concentration c obeys the continuity equation:

∂tc = −∇ · (jp + ja) , (1)

where jp and ja are respectively the passive and active
contributions to the current density. The passive cur-
rent density has the standard form jpi = cvi − Dij∂jc
where Dij = D0δij + D1Qij is the anisotropic diffusion
tensor, while the active current can be constructed phe-
nomenologically to be of the form jai = −α1c

2∂jQij or
derived from microscopic models [7]. Here the factor c2

reflects the fact that activity arises from interactions be-
tween pairs of rods while the constant α1 describes the
level of activity and is proportional to the concentration
of motors and the rate of adenosine-triphosphate (ATP)
consumption.

The flow velocity obeys an active form of the Navier-
Stokes equation

ρ∂tvi = η∆vi − ∂ip+ ∂jτij , (2)

with η the viscosity, p the pressure, and the active stress
tensor τij given by:

τij = −λSHij +QikHkj −HikQkj + α2c
2Qij (3)

Here ∇·v = 0, and the first three terms on the right side
of Eq. (3) represent the contribution to the elastic stress
due to the liquid crystalline nature of the system, with
Hij = −δF/δQij the molecular tensor defined from the
two-dimensional Landau-De Gennes free energy:

F/K =

∫
dA [ 12 (∇ ·Q)2 + 1

4 (c− c∗) trQ2 + 1
4c (trQ2)2]

where K is both the splay and bending stiffness (in the
one-constant approximation). At equilibrium, above the

critical concentration c∗, S =
√

2 trQ2 =
√

1− c∗/c
consistent with hard-rod fluid models. The last term in
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FIG. 1: (Color online) The velocity field (left) and the director
field (right) superimposed to a density plot of the concentra-
tion and the nematic order parameter for α2 = 0.4 (top) and
α2 = 3 (bottom). The colors indicate regions of large (green)
and small (red) density and large (blue) and small (brown)
nematic order parameter. For moderate values of α2 the flow
consists of two bands traveling in opposite directions with the
director field is nearly uniform inside each band. For large α2

the flow is characterized by large vortices that span lengths of
the order of the system size and the director field is organized
in grains.

Eq. (3) was first introduced in Ref. [9] and represents the
tensile/contractile stress exerted by the active particles
in the direction of the director field n, with α2 a second
activity constant.

Finally, the nematic order parameter Qij satisfies a
hydrodynamic equation that can be obtained by con-
structing all possible traceless-symmetric combinations
of the relevant fields, namely the strain-rate tensor uij =
1
2 (∂ivj + ∂jvi), the vorticity tensor ωij = 1

2 (∂ivj − ∂jvi)
and the molecular tensor Hij [8], so that

[∂t +v ·∇]Qij = γ−1Hij +λSuij +Qikωkj−ωikQkj (4)

where γ is an orientational viscosity, and the additional
terms on the right-hand side describe the coupling be-
tween nematic order and flow in two dimensions, with
λ the flow-alignment parameter which dictates how the
director field rotates in a shear flow and affects the flow
and rheology of active systems [2, 3].

The dynamics of such an active nematic suspension
is governed by the interplay between the active forcing,
whose rate τ−1

a is proportional to the activity parameters
α1 and α2, and the relaxation of the passive structures,
the solvent and the nematic phase, in which energy is dis-
sipated or stored. The response of the passive structures,
as described here, occurs at three different time scales:

the relaxational time scale of the nematic degrees of free-
dom τp = `2/(γ−1K), the diffusive time scale `2/D0, and
the dissipation time scale of the solvent τd = ρL2/η, with
L the system size. While the presence of three dimen-
sionless parameters makes for a very rich phenomenol-
ogy, we temporarily assume that the three passive time
scales are of the same magnitude τp. When τa � τp, the
active forcing is irrelevant and the system is akin to a
passive suspension. On the other hand, when τa ∼ τp,
a stationary regime can exist wherein the active stresses
are balanced by both elastic distortion and flow. Finally,
when τa � τp the passive structures will fail to keep up,
leading to a dynamical and possibly chaotic interplay be-
tween activity, nematic order and flow. To quantify these
different regimes, we first make the system dimensionless
by scaling all lengths using the rod length `, scaling time
with the relaxation time of the director field τp and scal-
ing stress using the elastic stress σ = K`−2.

Linear stability analysis about the homogeneous solu-
tion reveals that coupling between orientation and flow
triggers an instability at a lower critical value of α2

α∗
2 =

4π2[2η + S2
0(1− λ)2]

c20L
2S0(1− λ)

. (5)

and results in a spontaneous flowing banded state shown
in Fig. 1 (top). In general, shear flow causes the director
field to rotate for λ 6= 1, which generates elastic stress.
For small activity, the elastic stiffness dominates and sup-
presses flow, while above α∗

2 we observe collective motion.
This is the spontaneous flow transition already observed
in the absence of nematic order parameter fluctuations
[2].

To go beyond linear stability analysis, we numerically
integrated the equations (1)-(4) on a two-dimensional pe-
riodic domain with an initial configuration of a homoge-
neous system whose director field was aligned along the
x axis subject to a small random perturbation in den-
sity and orientation, with α1 = α2/2, η = D0 = D1 = 1,
λ = 0.1 and L = 10. We used a vorticity/stream-function
finite difference scheme on a collocated grid of lattice
spacing ∆x = ∆y = 0.078. Time integration was per-
formed via a fourth order Runge-Kutta method with time
step ∆t = 103. As predicted by the linear stability analy-
sis, at low activity the system relaxes to a stationary ho-
mogeneous state with vx = vy = 0 and S =

√
1− c∗/c.

Above the critical value α∗
2, the system forms two bands

flowing in opposite directions. The solution is constant
along the flow direction (see Fig. 1 top) while the direc-
tion of the streamlines (in this case along the x direc-
tion) is dictated by the initial conditions. As shown in
Fig. 2, the extrema in the flow velocity correspond to
the maximal distortion of the director field n. Variations
in concentration c and the nematic order parameter S
are of order 2% with a minimum in S at the center of
a flowing band due to the balance between diffusive and
active currents.
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FIG. 2: (Color online) The hydrodynamic fields c, S, θ and
vx along the y axis for α2 = 0.4 The yellow region indicates
the band visible in the top panels of Fig. 1

Upon increasing the value of the activity parameter
above α2 = 0.41, the spontaneously flowing state evolves
into a pulsatile flow. Fig. 3 (top left panel) shows a plot
of the x and y components of the flow velocity in the cen-
ter of the box for α2 = 1.5. In this regime the dynamics
consists of a sequence of almost stationary passive peri-
ods separated by active “bursts” in which the director
switches abruptly between two orthogonal orientations.
During passive periods, c and S are nearly uniform, there
is virtually no flow and the director field is either paral-
lel or perpendicular to the x direction. Eventually this
configuration breaks down and the director field rotates
by 90◦ (see Fig. 3). The rotation of the director field is
initially localized along lines, generating a band of flow
similar to those in Fig. 1 (top). The flow terminates
after the director field rotates and a uniform orientation
is restored. The process then repeats.

The rotation of the director field occurs through a tem-
porary “melting” of the nematic phase. As shown in Fig.
3, during each passive period the nematic order parame-
ter is equal to its equilibrium value S0 =

√
1− c∗/c, but

drops to ∼ (2/5)S0 during rotation. The reduction of
order is system-wide, but, as shown in the middle in the
bottom-left panel of Fig. 3, is most pronounced along the
boundaries between bands. Without transient melting,
the distortions of the director field required for a burst
are unfavorable for any level of activity.

Oscillatory phenomena have been shown to arise from
nonlinear stress-strain relationships in models of passive
complex fluids under shear [10]. Here we show that ex-
citability can arise in a model for active nematic flu-
ids without external forcing, driven by the competing
timescales of internal activity, flow, and microstructure
relaxation. To understand this quantitatively, we con-
struct a minimal set of equations that captures this com-
petition between timescales and retains the minimal fea-
tures responsible for excitability: the coupling between
active forcing and the fluid microstructure and the vari-

FIG. 3: (Color online) Dynamics of active “burst” for α2 =
1.5. The flow velocity at the point x = y = L/3 is shown as
a function of time over the course of a director field rotation
(top left) and the director field is shown for the three labeled
time points. Between two consecutive bursts the system is ho-
mogeneous and uniformly aligned. During a burst, nematic
order is drastically reduced in the whole system and the di-
rector undergoes a distortion with a consequent formation of
two bands flowing in opposite directions. Concentration fluc-
tuates by only about 10%. After a burst, a stationary state
is restored with the director field rotated of 90◦ with respect
to its previous orientation.

able nematic order embedded in the Landau-De Gennes
free energy. We approximate Q2

xx as a constant and
uxx ≈ 0, let u = −uxy and Q = Qxy, and drop the
coupling between Qij and ωij . Eqs. (2) and (4) can then
be expressed in Fourier space as:

Q̇ = aQ− bQ3 − u (6a)

u̇ = k2(αQ− ηu) (6b)

where k is a wave number of an arbitrary spatial mode
and a and b are proportional to the inverse rotational
viscosity γ−1. Eqs. (6) has the form of the FitzHugh-
Nagumo model for excitable dynamical systems [11]. For
α < αc = η(2a + ηk2)/3 the system rapidly relaxes to a
state characterized by a finite strain-rate that balances
the active stress with ηu = αQ = α

√
(a− α/η)/b. For

α > αc, this state becomes unstable and the trajectory
converges to a limit cycle with a frequency ν ∼ k2α. In
comparison, the frequency of oscillations as a function of
α2 for the full equations is shown in Fig. 4. As antici-
pated, when the active and passive time-scales are com-
parable the active forcing is accommodated by the mi-
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FIG. 4: (Color online) (Left) The average nematic order pa-
rameter 〈S〉 and the total shear stress σxy are shown over
several bursts for α2 = 1.5. (right) The frequency of bursts is
shown as a function of α2.

crostructure leading to a distortion of the director filed
and a steady flow. However, when the active forcing
rate is increased, the microstructure dynamics lag, re-
sulting in relaxation oscillations. The critical active rate
can be obtained by rewriting αc in terms of timescales
defined above to give 3τ−1

a = (2aτ−1
p + `2k2τ−1

d ), with
τa = η/α. The origins of the kink at α2 = 1.35 are un-
clear at present, but it does not correspond to excitation
of a spatial mode of larger wave-number.

Returning to the full equations, when the activity is
further increased, the sequence of bursts and the flow
patterns becomes more complex and eventually chaotic.
Fig. 1 (bottom) shows a typical snapshot of the flow ve-
locity and the director field superimposed to a density
plot of the concentration and the nematic order param-
eter respectively. The flow is characterized by large vor-
tices with patches, or “grains”, where the director field is
uniformly oriented. The relatively narrow grain bound-
aries span the entire system and are the fastest flowing
regions in the system. In this regime, the dynamics is
characterized by sets of grains of approximatively uni-
form orientation that swirl around each other and con-
tinuously merge and reform. Other examples of chaotic
flows in active fluids have been reported in models of di-
lute bacterial suspensions with no liquid crystalline elas-
ticity [12] (see also Ref. [2]e).

Our analysis of the hydrodynamics of active nematic
suspensions in two dimensions shows that allowing spa-
tiotemporal fluctuations in the magnitude of the nematic
order parameter S qualitatively changes the flow behav-
ior as compared to systems in which S is constrained to
be uniform, most notably leading to excitable behavior.
We note that both the flip-flop dynamics (Fig. 3) and
the swirling motion (Fig. 1 bottom) resemble behavior
observed in the motility assay experiments of Schaller
et al [6]. While those experiments consider polar fila-
ments, our analysis of mutually-propelled rods with ne-
matic order suggests that these classes of patterns can
emerge even in the absence of polar order. Finally, we
note that excitability is crucial to many biological func-
tions, such as cardiac rhythms and the nervous system.

While relaxation oscillations in those systems arise from
heavily regulated networks of chemical and electrical sig-
nals, the predictions of our model suggest that they can
also emerge directly from the physical interactions among
constituent components of a cell.
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