
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Competing Pairing Symmetries in a Generalized Two-Orbital
Model for the Pnictide Superconductors

Andrew Nicholson, Weihao Ge, Xiaotian Zhang, José Riera, Maria Daghofer, Andrzej M.
Oleś, George B. Martins, Adriana Moreo, and Elbio Dagotto

Phys. Rev. Lett. 106, 217002 — Published 24 May 2011
DOI: 10.1103/PhysRevLett.106.217002

http://dx.doi.org/10.1103/PhysRevLett.106.217002


LX11971

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Competing Pairing Symmetries in a Generalized Two-Orbital Model for the Pnictides

Andrew Nicholson,1, 2 Weihao Ge,1, 2 Xiaotian Zhang,1, 2 José Riera,3 Maria Daghofer,4
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We introduce and study an extended “t-U -J” two-orbital model for the pnictides that includes
Heisenberg terms deduced from the strong coupling expansion. Including these J terms explicitly
allows us to enhance the strength of the (π, 0)-(0, π) spin order which favors the presence of tightly
bound pairing states even in the small clusters that are here exactly diagonalized. The A1g and
B2g pairing symmetries are found to compete in the realistic spin-ordered and metallic regime.
The dynamical pairing susceptibility additionally unveils low-lying B1g states, suggesting that small
changes in parameters may render any of the three channels stable.

PACS numbers: 74.20.Rp, 71.10.Fd, 74.70.Xa, 75.10.Lp

Introduction. One of the main puzzles in iron-based
superconductors [1] arises from the conflicting experi-
mental results on the presence of nodes in the super-
conducting state. Surface-sensitive angle-resolved pho-
toemission (ARPES) studies [2] indicate that full nearly
momentum-independent gaps open on all Fermi surface
(FS) pockets. However, some bulk experiments give re-
sults compatible with nodal superconductivity [3]. On
the theory side, calculations where many different pairing
states are allowed to compete, as opposed to studying a
few isolated states, are difficult for multiorbital Hubbard
models. Within magnetic mechanisms for superconduc-
tivity, two approaches have addressed this issue: (i) ran-
dom phase approximation (RPA) studies suggested that
several pairing channels are in competition [4], in agree-
ment with (ii) two-orbital model Lanczos studies [5, 6]
based on the quantum numbers of the state with two
more electrons than half-filling. However, RPA relies on
a particular subset of diagrams and it is a weak-coupling
approach, while studying the quantum numbers of clus-
ters did work before for the cuprates [7], but finding true
Cooper pair formation is difficult.

In this Letter, a simple generalization of Hubbard mod-
els for pnictides is presented that increases the strength
of the (π, 0)-(0, π) spin order in the undoped limit, cre-
ating tightly bound-states upon electronic doping that
can be studied with Lanczos methods on the small clus-
ters currently accessible with state-of-the-art computers.
These extra terms can be justified by noting that the
undoped state, which combines itinerant electrons with
a robust Néel temperature and a lattice distortion [8],
is itself rather exotic and suggests a more stable mag-
netic order than a description based exclusively on on-
site Coulomb repulsion would support. The t-J model

for cuprates [9] provides further guidance: here J , when
considered as independent of t, can be increased to suf-
ficiently large values that d-wave pairing tendencies are
amplified and tightly bound-states are formed, while in
the Hubbard model the d-wave pairing signal is weak [9].
In pnictides, the strong coupling t-J1-J2 model has been
studied before [10]. In the alternative “t-U -J” route [11]
to be followed here, Heisenberg “J” terms will be added
to the original Hubbard model to enhance spin order and
pairing tendencies, but without projecting out doubly oc-
cupied sites and charge fluctuations.

Model and method. The two-orbital model [5, 6, 12]
based on the dxz (x) and dyz (y) Fe orbitals is studied
here. Keeping only these two orbitals is reasonable since
x and y provide the largest contribution to the pnictides’
band structure FS [13]. In addition, the studies described
below are computationally demanding and they simply
cannot be carried out with more orbitals. Thus, a bal-
ance must be reached between the more ideal five-orbital
models and the feasibility of the actual calculations. The
model includes a hopping term with amplitudes that fit
band calculations [12] (energy scale |t1|), a Hubbard term
with on-site intraorbital repulsion U , a Hund coupling
JH, an interorbital repulsion fixed as U ′ = U−2JH, and a
pair-hopping term with coupling J ′=JH [14]. The model
was used in several previous studies [6]. The novelty are
the extra Heisenberg terms that will be added, with as-
sociated couplings JNN and JNNN, as discussed below.

The two-orbital Hamiltonian is exactly investigated us-
ing the Lanczos algorithm (including dynamical informa-
tion) on a small tilted

√
8×

√
8 cluster [5, 6, 9]. This re-

quires substantial computational resources: to determine
the undoped-limit ground state of the 8-sites cluster even
exploiting the Hamiltonian symmetries still requires a ba-
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sis with ∼2-20 M states (equivalent to a 16-sites cluster
one-band Hubbard model) depending on the subspace ex-
plored. Lanczos runs had to be performed for all allowed
momenta k, quantum numbers under rotations and re-
flections (i.e. irreducible representations A1g, A2g, B1g,
B2g, and E of the D4h group [6, 15]), and z-axis total
spin projections. In addition, binding energies require
calculations for a number of electrons N equal to 16, 17,
and 18, varying U , JH, JNN, and JNNN in a fine grid.
The full effort amounted to ∼8,000 diagonalizations of
the cluster, supplemented by dynamical calculations, us-
ing a Penguin 128GB Altus 3600 computer.

Results for the original two-orbital model. The relative
symmetry between the undoped (N=16) ground state
(GS) and the N=18 GS has been studied varying U/|t1|
and JH/U . The results at JNN=JNNN=0 are shown in
Fig. 1(a). The undoped GS has momentum k = (0, 0)
and it transforms according to the A1g representation of
the D4h group, for all the investigated values of JH and
U . The N=18 GS also has k = (0, 0), but its irreducible
representation varies in different regions of the phase di-
agram. In agreement with previous results [6], the N=18
GS is a spin triplet for U≤ 6 |t1|[16] and a broad range
of JH/U . A spin-singlet state with symmetry B2g dom-
inates the small JH/U (roughly ≤0.15) region for the
studied values of U/|t1|. This B2g state arises from the
orbital portion of the pairing operator since the two extra
electrons added to the undoped GS are located in differ-
ent orbitals [6]. At U≥ 7 |t1| and intermediate to large
JH/U regimes, the singlet-state symmetry becomes A1g.
The binding energy EB=E(18)+E(16)− 2E(17), where
E(N) is the GS energy of N electrons, was also studied.
Binding, i.e. EB < 0, is observed but only at large U ’s
where the undoped GS is an insulator.
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FIG. 1: (color online) Relative symmetry between the N=16
(undoped) and N=18 GS’s, varying U and JH/U . Circles
denote triplet states, squares B2g-symmetric singlets, and di-
amonds A1g-symmetric singlets. (a) Results for couplings
JNN=JNNN = 0. Open triangles indicate binding. (b) Results
for the lowest value of (JNN, JNNN) where binding appears.

Binding stabilization. As discussed in the Introduc-

tion, here the spin background with wavevectors (π, 0)-
(0, π) will be magnified via the addition of extra Heisen-
berg terms with the expectation that carrier attraction
will become stronger, leading to EB < 0 pairing. To find
the precise form of the Heisenberg terms, a strong cou-
pling (large U and JH) expansion of the undoped two-
orbital Hamiltonian was carried out. Nearest-neighbor
(NN) and next-nearest-neighbor (NNN) Heisenberg in-
teractions were obtained. This strong coupling expan-
sion for multiorbital models is subtle and it has to be
performed in such a way that the results are indepen-
dent of the basis chosen for the orbitals. Following, e.g.,
[17] these additional interactions are

∑
〈ij〉,αβ JijSiα ·Sjβ ,

where 〈ij〉 indicates NN and NNN sites with Jij=JNN

and JNNN, {α, β} label the orbitals (x or y), and Siα

is the total spin at site i and orbital α. The couplings

are JNN=
2(t21+t22)
3(U+JH) , and JNNN=

4(t23+t24)
3(U+JH) , where ti are the

hoppings t1=−1, t2=1.3, t3=t4=−0.85 in the usual no-
tation [12] (|t1| units). JNN and JNNN are the same for

both orbitals. The ratio JNN

JNNN
= 1

2
t21+t22
t2
3
+t2

4

=0.93 is kept fixed

since JNN and JNNN are both antiferromagnetic, and a
ratio ∼1 introduces frustration favoring (π, 0)-(0, π) spin
order, as confirmed by calculating the spin structure fac-
tor and varying JNN/U [18]. Below, JNN will be con-
sidered a free parameter independent of U and JH (with
JNN/JNNN=0.93), to further enhance such a spin order.

By adding the extra Heisenberg terms to the two-
orbital model, the desired goal is obtained since with
increasing JNN eventually EB becomes negative for all
the studied (U, JH) couplings. The spin-triplet region
virtually disappears (Fig. 1(b)) and it is mainly re-
placed by the B2g state which itself becomes confined
to U < 4 |t1| (squares) due to the expansion of the A1g

region. The symmetries shown in Fig. 1(b) were obtained
with the smallest superexchange values (J∗

NN, J
∗
NNN) that

produce binding of two electrons at each (U, JH) point.
In Fig. 2(a), where the binding energy vs. JNN/U is
shown at several U ’s and at a fixed (realistic) JH/U=0.2,
some examples of (J∗

NN, J
∗
NNN) can be found. Increasing

JNN eventually induces binding for all U ’s. The value of
JNN/U for which binding occurs decreases as U increases.

Studying EB and the relative symmetry between the
N=16 and 18 GS’s, phase diagrams in the (U, JNN/U)
plane were constructed. In Fig. 2(b), typical results for
JH/U=0.2 are shown [19]. The bound state has A1g sym-
metry in most of the binding region, but a B2g symmet-
ric state also prevails at small U values (∼ 2 |t1|). Both
symmetries appear inside the proper magnetic/metallic
region of the undoped limit, according to mean-field cal-
culations [20] extended to incorporate JNN. In [18] it is
shown that the results in Figs. 2(a,b) are qualitatively
the same varying JNN/JNNN in the range [0.5,1.5].

Overlaps. Consider now the pairing operators that
produce the electronic bound states. The over-
lap 〈Ψ(N=18)|∆†

k,i|Ψ(N=16)〉 was calculated, where
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FIG. 2: (color online) (a) EB/|t1| vs. JNN/U for different
values of U/|t1| and JH/U=0.2. (b) Phase diagram show-
ing “Binding” and “No Binding” regions and the symmetry
of the two-electron bound state varying U/|t1| and JNN/U ,
for JH/U=0.2. The shaded area is where the antiferromag-
netic/metallic state is stabilized in the mean-field approxima-
tion for the undoped limit. The dot-dashed line is for Fig. 3.

|Ψ(N)〉 is the GS in the subspace of N electrons and

∆†
k,i=

∑
αβ f(k)(σi)αβd

†
k,α,↑d

†
k,β,↓, with d†k,α,σ creating

an electron with spin z-axis projection σ, at orbital
α = x, y, and with momentum k. The structure factor
f(k) arises from the spatial location of the electrons form-
ing the pair [6], and σi are the Pauli matrices (i = 1, 2, 3)
or the 2× 2 identity matrix σ0 (i = 0) (note that σ1 and
σ2 imply an interorbital pairing). Overlaps for all the
symmetries in [6], and with NN and NNN locations for
the electronic pairs, were evaluated.

For all operators respecting the relative symmetry be-
tween the doped and undoped states, finite overlaps
were found, although of different values. As a trend,
as the binding grows, pairing involving NNN opera-
tors prevail over the NN ones. For example, in the
A1g region in Fig. 2(b) there are four pairing opera-
tors with finite overlap (shown in Fig. 3(a) for U=3|t1|
and JH/U=0.2) characterized by f(k)σi equal to: (i)
(cos kx+cosky)σ0 (full circles); (ii) (cos kx cos ky)σ0 (full
squares); (iii) (sin kx sin ky)σ1 (full diamonds); and (iv)
(cos kx − cos ky)σ3 (full triangles). Close to the bound-
ary with the B2g phase where the binding is weak (EB≈-
0.05 |t1|), operators (i) and (ii) present the largest, and
almost equal, overlaps. With increasing binding the (i)
overlap decreases while (ii) becomes stronger. The over-
laps for operators (iii) and (iv) are clearly smaller.

Note that (ii) is the simplest expression of a nodeless
s± pairing operator [21]. Our results indicate that this
type of pairing dominates only when the binding energy
is large, which occurs at very large U or JNN. At interme-
diate values of couplings, a symmetric linear combination
of (i) and (ii) with almost equal weights is optimal, and
it leads to a “quasi-nodal” s± pairing state (Fig. 3(b)).
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FIG. 3: (color online) (a) Overlap 〈Ψ(N=18)|∆†
k,i|Ψ(N=16)〉

vs. JNN/U for the indicated pairing operators, at U=3 |t1|
and JH/U=0.2. (b) Superconducting gap at the FS: internal
hole pocket (continuous line), external hole pocket (dashed
line). The dot-dashed and double dot-dashed lines are for
the two electron pockets which intersect at the BZ bound-
ary ( Φ=π/4) of the folded zone. The A1g+ symmetric linear
combination of A1g operators (i) and (ii) is used, with equal
weight. The angle Φ is measured from the positive x-axis to
the positive y-axis. (c) Same as (b) but for the B2g+ sym-
metric combination of the B2g operators (v) and (vi). (d)
Dynamic pairing susceptibility for the pairing operators indi-
cated (see text), at U=3 |t1|, JH/U=0.2, and JNN/U=0.095.
The vertical line indicates E(18) − E(16).

From this perspective, the most “natural” A1g pairing
operator arises from a linear combination of (i) and (ii),
as opposed to just (ii) as in s± scenarios. The gaps in
Fig. 3(b) were calculated from mean-field approximations
as in [6] and [22], and choosing a pairing strength V0 such
that the gap order-of-magnitude in meV’s agrees with ex-
periments [16]. Note that the linear combination A1g+

for the hole pockets closely reproduces (full and dashed
lines) the ARPES results in the superconducting state,
with both gaps only weakly k-dependent, and with the
interior (exterior) pocket gap ∼ 12 (6) meV. The electron
pockets, on the other hand, present strongly k-dependent
gaps, and a quasi-node is found along the x- (y-) axes for
the pocket at X (Y ). In the folded zone, this implies that
the quasi node is on the outer pocket, in agreement with
angle-resolved specific heat measurements [23].

Note that the presence of a dxy “patch” on the electron
pockets has been discussed before by many groups as
possibly responsible for gap nodes (or minima) on the
electron pockets. The present results show that such a
minimum (or nodes) can arise without such an xy-patch,
which is important to assess the impact of the various
orbitals. The one-particle spectral function A(k, ω) was
also calculated [18]. Features on the scale of the magnetic
or superconducting gaps cannot be resolved within the
few momenta available, but the higher energy features
at intermediate couplings are similar to non-interacting
bands [20], in agreement with ARPES experiments and
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with LDA+DMFT calculations [24].

As mentioned before, in physically relevant portions of
the phase diagram [20] the pairing symmetry B2g com-
petes with A1g. Three B2g pairing operators with finite
overlaps were found in this region: (v) (cos kx+cosky)σ1,
(vi) (cos kx cos ky)σ1, and (vii) (sin kx sin ky)σ0. From
Fig. 3(a) the interorbital operators (v) and (vi) have a
much larger GS overlap than the intraorbital operator
(vii). The mean-field calculation of the gaps for the sym-
metric combination of the prevailing B2g pairing opera-
tors, i.e. (v)+(vi), is in Fig. 3(c). All the gaps have nodes
along the x and y axes, also in good agreement with [23].
A strong k dependence is observed for all FS pockets,
and the electron-pocket gaps are small (∼ 1 meV).

Dynamical Pair Susceptibilities. To complete our
analysis the dynamical pair susceptibilities, defined by
P (ω) =

∫∞

−∞ dteiωt〈∆k,i(t)∆
†
k,i(0)〉, were also studied in

the state with N=16 for the pairing operators ∆k,i. A
procedure used in the context of the cuprates will be
followed [25]. Results for U=3 |t1|, JH/U=0.2, and sev-
eral values of JNN/U were obtained along the dot-dashed
line (red) of Fig. 2(b). The overlaps calculation already
indicated that for N=18 there are several low-lying en-
ergy states with different symmetries near the GS. The
dynamical pair susceptibilities show that most of these
low lying states have a large overlap with ∆†

k,i|ΨN=16(0)〉
for ∆†

k,i with the appropriate symmetry. This is quali-

tatively different to the cuprates’ t-J model, where the
overlap of the doped GS with ∆†

k,i|Ψ(0)〉 was large for ∆
with d-wave symmetry but negligible for s-wave symme-
try [25]. In that s-wave case the spectral weight in P (ω)
accumulates at high energies, while P (ω) for the d-wave
pairing operator showed a well defined sharp peak at the
GS energy of the doped state [25]. This is not the case
for the two-orbital model. For example, in Fig. 3(d) at
JNN/U=0.095, where the doped GS has symmetry B2g,
a sharp peak occurs in P (ω) for the B2g pairing oper-
ator (v), but a similar behavior is found in P (ω) for
the A1g pairing operator (i) (the low-lying peak origi-
nates in a low-lying excited state with A1g symmetry).
In addition, the susceptibility for a pairing operator (viii)
(cos kx + cos ky)σ3, NN version of the B1g operator (ix)
(cos kx cos ky)σ3, is also competitive [26] (Fig. 3(d)).

Conclusions. The effects of NN and NNN Heisenberg
terms on the symmetry and the binding energy of two
electrons added to the undoped state of the two-orbital
Hubbard model were studied using Lanczos techniques
on small clusters. Quasi-nodal A1g bound states are
stabilized for physical values of JH/U , in the interme-
diate/large U region, in agreement with RPA results [4].
Our results also indicate that a competing B2g state may
become stable in physically relevant regimes of U/|t1|.
In addition, the pairing susceptibility presents low-lying
excitations with B2g, A1g, and B1g symmetries. Thus,
pairing correlations with any of these symmetries could

be stabilized by small modifications in the model param-
eters, in agreement with [4–6, 10]. This suggests that
a similar sensitivity to small details may occur among
different compounds of the pnictide family.
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