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A natural explanation for the carrier concentration-dependent electronic behavior in the layered
cobaltates emerges within correlated-electron Hamiltonians with finite on-site and significant nearest
neighbor hole-hole Coulomb repulsions. The nearest neighbor repulsion decreases hole double-
occupancy below hole density 1

3
, but increases the same at higher hole densities. Our conclusion is

valid for both single-band and three-band extended Hubbard Hamiltonians.

PACS numbers: 71.10.Fd, 71.10.Hf, 74.20.Mn, 74.70.Kn

Layered cobaltates – anhydrous NaxCoO2, LixCoO2

and the misfit cobaltates [Bi2A2O4] [CoO2]m, where A =
Ba, Sr or Ca and m is incommensurate – have attracted
wide attention for their unconventional metallicity and
tunability of the carrier concentration. NaxCoO2 con-
sists of edge-sharing CoO6 octahedra, with CoO2 layers
separated by Na layers. The Co ions with average charge
(4-x)+ form a triangular lattice. Both experiments [1]
and theory [2] indicate low-spin states for the Co-ions.
Trigonal distortion splits the t2g d-orbitals into two low-
lying e′g orbitals and a higher a1g orbital. Charge carriers

are S = 1

2
holes on the Co4+ sites [3]. The hole density

ρ = 1−x in NaxCoO2 and LixCoO2. Angle-resolved pho-
toemission from NaxCoO2 indicate that carriers occupy
the a1g orbitals only [3–5], although Compton scattering
finds small x-dependent e′g contribution [6].

The electronic and magnetic behavior of these
materials exhibit a peculiar carrier concentration-
dependence. The temperature-dependent magnetic sus-
ceptibility χ(T ) in NaxCoO2 was early on character-
ized as “Pauli paramagnetic” for x < 0.5 and “Curie-
Weiss” for x > 0.5 [7]. The Curie-Weiss behavior reflects
strong Coulomb repulsion between the holes [1, 3, 4, 7, 8].
Strong correlation at large x is supported by observa-
tions of charge-ordering (CO) [9, 10], Na-ion ordering
[11], spin-density wave and intralayer ferromagnetic cor-
relations [12]. Qualitatively different behavior for the
small x region is also agreed upon. Recent experimen-
tal work suggest that (a) χ(T ) here is weakly antiferro-
magnetic rather than Pauli paramagnetic, and (b) the
cross-over between strong and weak correlations occurs
at x ∼ 0.63− 0.65 rather than x = 0.5 [10].

Understanding the x-dependence of the electronic and
magnetic behavior of NaxCoO2 continues to be a chal-
lenge. It has been suggested that while the a1g-only de-
scription is valid for large x, holes occupy both a1g and
e′g orbitals at small x [13]. Quantum chemical config-
uration interaction calculations [14] find larger a1g − e′g
separation than LDA calculations [2], and many-body ap-
proaches that take Coulomb hole-hole repulsion into ac-
count [15–17] do not find the e′g pockets on the Fermi sur-

face predicted within LDA calculations. x-dependence
has also been ascribed to differences in the potential due
to Na layers [11, 18]. Experimentally, LixCoO2 [19] and
Bi “misfit” cobaltates [20] do not exhibit ion ordering but
nevertheless exhibit very similar carrier concentration-
dependence [19, 20], suggesting that this dependence is
intrinsic to the CoO2 layers.
In the present Letter we show that a simple and nat-

ural explanation of the carrier concentration-dependence
emerges within a1g-only as well as multiband extended
Hubbard models. Our discussions below involve ρ which
is well-defined for all systems, instead of x. Following
[16] we write the three-band Hamiltonian as

H = −
∑

〈ij〉αβσ

tαβc
†
iασcjβσ +

∑

i

∆(nie′
g
− nia1g

)

+
1

2

∑

iαβσσ′

Uσσ′

αβ niασniβσ′ + V
∑

〈ij〉αβ

niαnjβ . (1)

Here α and β refer to the a1g and e′g orbitals, c†iασ creates

a hole of spin σ on orbital α on site i, niασ = c†iασciασ and
niα =

∑
σ niασ. tαβ is the nearest neighbor (n.n.) hop-

ping, ∆ the trigonal splitting, U ≡ Uσ,−σ
αα and U ′ ≡ Uσσ′

αβ

are the onsite intra- and inter-orbital Coulomb interac-
tions, and V is the n.n. Coulomb interaction. As in
[16], we have ignored the Hund’s rule coupling based on
the very small hole occupation of e′g orbitals (see below).
As both photoemission experiments [3–5] and many-body
theories [14, 15, 17] find negligible role of e′g orbitals, we
discuss the one-band limit of Eq. 1 first. We show that
the V term is essential within the one-band model for un-
derstanding the ρ dependence of the susceptibility. We
then show that the same effect not only persists in the
full three-band model, but influences the ρ-dependence
of the e′g orbital occupation as well.
Single-band limit. Terms containing U ′ and ∆ are ir-

relevant and U , V , and tαα refer to a1g orbitals only. We
write tαα = t and express U and V in units of t. For
hole carriers t > 0 [3]. Existing a1g-only theories largely
assume U ≫ t [21] or V = 0 [15, 17, 18, 21, 22]. The few
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FIG. 1: (Color online) Dominant ground state configurations
for (a) ρ = 1

3
and (b) one hole added to ρ = 1

3
. Circles labeled

‘h’ (‘2h’) are singly (doubly) occupied sites, with vacancies oc-
cupying the vertices of the triangular lattice. The n.n. hop
indicated by the arrow in (b) costs U − 3V . Dominant con-
figurations for ρ = 2

3
, with (c) Nd = 0, and (d) Nd = 1

3
N .

studies that have investigated the effects of finite V on
triangular lattices are either for particular ρ = 0.5 [23] or
2

3
[24], or use approximate approaches [25] that do not

capture the ρ-dependence seen experimentally. We con-
sider here realistic finite U and V . We do not assume
that U and V are ρ-dependent. Rather, we show that
ρ-dependent correlations emerge as solutions to Eq. 1.

Two different observations give the appropriate param-
eter range. (i) At ρ = 1 Eq. 1 can be replaced by a V = 0
Hubbard Hamiltonian with an effective on-site repulsion
Ueff = U − V . Within the V = 0 Hubbard model for the
triangular lattice, transition to the Mott-Hubbard insu-
lator occurs for Ueff > Uc, where Uc ≃ 5 − 10. [26].
Experimentally, ρ = 1 CoO2 is a poor metal [8]. indicat-
ing that U −V ≤ 5− 10 for cobaltates. (ii) For V > 1

3
U ,

ρ = 2

3
would be charge-ordered with all sites doubly oc-

cupied (Co5+) and vacant (Co3+), as shown in Fig. 1(d).
The absence of such CO indicates V < 1

3
U . Taking (i)

and (ii) together, we conclude that the likely parameter
regime is 6 < U < 14, 1 < V < 4. Our estimate of V/U
is close to that of Choy et al. [23]. Our estimate of U/t
is slightly smaller [13, 17].

We now argue that for realistic U and V there occur
three distinct hole density regions. (i) ρ ≤ 1

3
, where cor-

relation effects are strongest; (ii) intermediate 1

3
< ρ ≤ 2

3
,

where correlation effects become weaker with increasing
density, and can be quite weak at the highest ρ; and (iii)
ρ > 2

3
, where correlation effects increase again slowly.

We classify configurations by the number of double oc-
cupancies Nd. Fig. 1 (a) shows the

√
3 ×

√
3 Nd = 0

charge-ordered configuration that should dominate the
ground state of ρ = 1

3
. For fixed U , V creates an energy

barrier to holes approaching each other. The energy cost
of creating a double occupancy is thus greater than U for
ρ ≤ 1

3
, which should exhibit strongly correlated behavior.

(d)

(c)

(e)

(b)(a)

(f)

FIG. 2: (Color online) Clusters investigated numerically: (a)
N = 12; (b) and (c) N = 16; (d) N = 18; (e) and (f) N = 20

This situation changes as ρ increases, as seen in Fig. 1 (b),
where we have added a single hole to the charge-ordered
configuration of ρ = 1

3
. The particular hop indicated

in the figure that creates a double occupancy costs only
U−3V . There are only three of these, but the number of
low energy hops increases rapidly with further increase
in ρ, increasing 〈Nd〉. In Fig. 1(c) we show the two ex-
treme charge-ordered configurations for ρ = 2

3
, one with

Nd = 0 (Fig. 1(c)), the other with Nd = Nmax = 1

3
N .

The configurations are degenerate at U = 3V . There is
thus strong mixing of Nd = 0 and Nd > 0 configurations
for ρ close to 2

3
, even for V < 1

3
U . Adding double occu-

pancies to the configuration in Fig. 1(d) is prohibitively
expensive in energy, which implies that for ρ > 2

3
the

competition of Nd = 0 is no longer with Nd = Nmax but
still with Nd = 1

3
N . We expect correlations to slowly

increase again in this region.
We have performed exact numerical calculations to

confirm the above conjectures. As a measure of correla-
tions we have chosen the normalized probability of double
occupancy g(ρ) in the ground state,

g(ρ) =
〈ni,↑ni,↓〉
〈ni,↑〉〈ni,↓〉

(2)

g(ρ)=1 and 0 for U = 0 and U → ∞, respectively, for all
ρ, and has intermediate values in between. g(ρ) is thus
a measure of Ueff(ρ): small g(ρ) implies enhanced Curie-
Weiss type χ(T ) while moderate to large g(ρ) implies
weak antiferromagnetic spin-spin correlations [27]. Our
proposed mechanism suggests that g(ρ) is small (large)
for small (large) hole density, provided V is significant.
We have calculated g for the six triangular lattice clusters
in Fig. 2, using periodic boundary condition. For clusters
(a)-(c) the number of holes Nh covers the complete range
ρ ≤ 1. Computer memory constraints restrict us to ρ ≤
0.88 for cluster (d) and ρ ≤ 0.6 for clusters (e) and (f),
respectively. Our calculations are for all realistic U and
V ≤ 1

3
U . As the results are qualitatively the same in all

cases, we report our results for U = 10 only.
In Fig. 3 we show our results for clusters (a)-(d) for

U = 10 and V = 0, 2 and 3. Our data points include both
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FIG. 3: (Color online) Normalized probability of double oc-
cupancy of sites by holes versus hole density for U=10, V=0
(circles), 2 (diamonds) and 3 (triangles) on clusters with (a)
N = 12, (b) and (c) N = 16, corresponding to Fig. 2(b)
and (c), respectively, and (d) N = 18. Points within squares
indicate S > Smin (see text).

even and odd Nh, and except for Nh ≥ 14 in Fig. 3(d)
we have determined the total spin S in the ground state
in each case. With few exceptions, S = Smin = 0 (1

2
)

for even (odd) Nh. S > Smin is a finite-size effect, as for
different clusters this occurs at different densities. The g-
values for the S > Smin points were calculated correctly
in accordance with Eq. 2. The dips in g for higher S are
expected. In every case we have included dashed straight
lines connecting the neighboring points on both sides.
The g for S = Smin at these points is likely bounded by
the computed points and the dashed lines. In all four
cases, g(ρ) is nearly independent of ρ for V = 0, but
exhibits the ρ-dependence predicted for V 6= 0. The ρ-
dependence is weakest for N = 12. In all other cases
there occur distinct strongly correlated low density region
(ρ ≤ 0.4), where V suppresses g and relatively weakly
correlated intermediate density region (0.4 ≤ ρ ≤ 0.8),
where V enhances g. The predicted decrease in g(ρ) for
larger ρ is also visible in Fig. 3(b) and (c).

Fig. 4 shows plots of g(ρ) for the 20-site clusters of
Fig. 2(e) and (f). As in Fig. 3 we have retained the
points with S > Smin. Distinct density regions (i) and
(ii), with opposite effects of V are again clearly visible.
The boundary between strongly and weakly correlated
regions is ρ ≈ 0.30, in agreement with recent experi-
ments [10]. Calculated charge-charge correlations 〈ninj〉
(not shown) indicate that while near ρ = 1

3
(Nh = 6

and 7) there is tendency to CO there is no such ten-
dency at ρ = 0.5 (Nh = 10). The qualitative agreement
between our results for six different clusters, along with
steeper ρ-dependence with increasing N , strongly suggest
that our results will persist in the thermodynamic limit.
Three-band model. ρ-dependent g is a consequence of
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FIG. 4: (Color online) Same as Fig. 3 for N = 20, for U = 10
and V = 0 (circles), 2 (diamonds) and 3 (triangles); (a) and
(b) correspond to lattices Fig. 2(e) and 2(f), respectively.

the competition between U and V at large ρ [27] and is
unrelated to dimensionality or frustration. Since exact
three-band calculations are not possible for the clusters
of Fig. 2, we have performed three-band calculations for
a one-dimensional (1D) periodic cluster with eight sites,
each with one “a1g” and two “e′g” (hereafter a, e1 and
e2, respectively) orbitals. The only differences between
1D and the triangular lattice are, (i) the Wigner crys-
tal occurs at ρ = 1

2
in 1D instead of ρ = 1

3
, and (ii)

the maximum in g(ρ) is expected near ρ = 3

4
[27] rather

than 2

3
. We retain the same U and V and take tαα = t,

inter-orbital hopping tαβ = 0.1− 0.3t (α 6= β), ∆ = 3|t|
[14], and U ′ = 0.6U [17]. We use periodic (anti-periodic)
boundary conditions for Nh = 4n+ 2 (4n) [28].

In Fig. 5(a), we have plotted ga(ρ), the normalized
probability of double occupancy of the a-orbitals by
holes, within the three-band model (ge(ρ) varies by less
than 15% over the entire range of ρ). The carrier density
ρ here is the ratio of the total number of holes and the
number of a-orbitals, in agreement with the definition of
ρ in NaxCoO2. The ga(ρ)-behavior is nearly identical to
that of g(ρ) in Figs. 3 and 4. Interestingly, ga(ρ) be-
havior is the same for small and large te,a, in spite of
moderate hole population n(e) in the e orbitals in the lat-
ter case. Calculations for smaller ∆ (not shown) indicate
similar weak dependence of ga(ρ) on ∆.

In Fig. 5(b) we plot r(e), the fraction of holes that
occupy the e orbitals, assuming tαβ = 0.3t, for (a) non-
interacting, (b) U,U ′ 6= 0 but V = 0, and (c) V > 0 cases.
Comparing the noninteracting and the V = 0 plots, it is
clear that nonzero U and U ′ decrease the e′g occupation
because of correlation-induced band narrowing [15, 17].
The V > 0 plot is far more interesting: r(e) shows a
peak at the same ρ where ga(ρ) has a maximum. This
shows that correlation effects due to V play a more com-
plex role in the multiband picture: in the large-ρ region
V reduces Ueff (Fig. 5(a)) for the same reason as in the
single-band picture. This reduces the extent of band-
narrowing at precisely these ρ, and leads to an increase
in r(e) even for ρ-independent ∆. Existing discussions of
e′g hole occupancy have largely focused on the Fermi sur-
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FIG. 5: (Color online) (a) Normalized probability of double
occupancy of the a-orbitals by holes in the 1D 3-band model
for N = 8, ∆ = 3 (b) The fraction of holes occupying e-
orbitals. In both, unfilled (filled) symbols are for inter-orbital
hopping 0.1t (0.3t). Diamonds (circles) are for V = 0 (V = 3).
In (b), the dashed line shows the noninteracting (U = U ′ =
V = 0) result. For all other points U = 10 and U ′ = 6.

face [3–6]. Our work shows that there can indeed occur
weak e′g hole occupation, especially for ρ close to 2

3
. The

e′g occupation estimated by Compton scattering shows
a ρ-dependence (see Table I in [6]) that is very similar
to our results for V > 0 in Fig. 5(b), viz., increasing
e′g-occupancy with increasing ρ. This result cannot be
explained with V = 0, as seen in Fig. 5(b). Our calcula-
tions show that ρ-dependent χ(T ) and e′g occupation are
manifestations of the same many-body effect.
Summary. Strongly correlated behavior for small hole

densities and relatively weakly correlated behavior for
larger hole densities are both expected for nonzero n.n.
Coulomb interaction. To the best of our knowledge there
exists no other satisfactory theoretical explanation for
the observed weakly correlated behavior nearer to the
Mott-Hubbard semiconducting hole density and strongly
correlated behavior farther away from this limit. The
strong tendency to CO at ρ exactly 1

3
and the absence of

this tendency at ρ = 2

3
are both understood. The poten-

tial due to Na-ions, ignored in our work, will strengthen
the CO even for incommensurate fillings with ρ ≤ 1

3
[11].

We do not find CO at ρ = 0.5, although it is moder-
ately correlated. Observed CO here [7] is likely driven
by the cooperative effects of V and the Na-ion potential.
Conversely, the absence of Na-ion ordering for weakly
correlated x < 0.5 in NaxCoO2 further suggests that the
CO and Na-ion ordering are synergistic effects.
This work was supported by the Department of Energy

grant DE-FG02-06ER46315.
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