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Volume changes associated with point defects in space charge layers can produce strains that 

substantially alter thermodynamic equilibrium near surfaces in ionic solids. For example, near-

surface compressive stresses exceeding -10 GPa are predicted for ceria. The magnitude of this 

effect is consistent with anomalous lattice parameter increases that occur in ceria 

nanoparticles.  These stresses should significantly alter defect concentrations and key transport 

properties in a wide range of materials (e.g., ceria electrolytes in fuel cells). 

 

Space charge models are widely used to describe the electrochemical behavior of 

surfaces and interfaces in ionic solids [1-11]. The premise for these descriptions is that defect 

formation energies at surfaces differ from those in the bulk. This leads to an electric potential 

gradient near the surface, to maintain thermodynamic equilibrium. Fig 1 shows the regions 

associated with this phenomenon near a simple surface.  In the standard analysis, surface 

defect energies are reflected only in the total electric potential difference between the surface 

and bulk, and the description focuses on evaluating defect concentration variations across a 

space charge (SC) layer. The standard analysis also ignores the volume changes that should be 

associated with these defect concentration variations. This expansion or contraction is 

constrained by the bulk crystal, and can thus induce a corresponding compositional stress in the 

SC region. Extending the standard SC treatment to incorporate these stresses is the primary 

objective of this letter. 

Stresses in the SC layer should significantly influence surface-related properties. To 

demonstrate this with a meaningful example, our analysis focuses on CeOଶିχ which is used as a 

fuel cell electrolyte and a catalyst. Stresses induced by non-stoichiometry in ceria are 

documented [12-15], and in polycrystalline ceria it is widely believed that SC effects at grain 
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boundaries lead to substantial variations in ionic and electrical conductivity [5,16,17]. In 

particular, SC induced decreases in ionic conductivity are a critical limitation in fuel cell 

electrolytes. Several recent reports also suggest that stresses associated with ceria interfaces 

may increase ionic conductivity [18-20].   

Ceria exhibits substantial nonstoichiometry. Oxygen vacancies dominate the defect 

chemistry [21-25], with oxygen removal given by: ܱை  ݁ܥ2   ֎   ைܸ··  ᇱ݁ܥ 2  12 ܱଶሺ݃ሻ                                             ሺ1ሻ 

where ைܸ·· are oxygen vacancies and ݁ܥᇱ  is Ce3+on a Ce4+ site (i.e., an extra electron).  

Analogous expressions for other non-stoichiometric crystals include cation deficiencies, 

interstitial defects, etc. The key feature here is dominant defects with net positive and negative 

charges (e.g., ைܸ·· and ݁ܥᇱ  in Eq 1). The non-stoichiometry in Eq 1 produces significant volume 

changes in CeOଶିχ[23,24], however, the implications of these changes on stress in the SC layer 

have not been evaluated. The key thermodynamic property here is the partial molar volume of 

oxygen: 

ைܸതതത  ൌ  ൬ ߲ܸ߲ ைܰ൰்,,ே                                                              ሺ2ሻ 

where ܸ is the total volume and NO and NC are the numbers of anions and cations. This quantity 

describes volume change in the bulk, however, point defect variations in the SC layer should 

produce different volume changes and thus give rise to stress. Here, it is necessary to separate 

the partial molar volumes for ைܸ··  and ݁ܥᇱ  into ܸതതത and ܸഥ . With a fixed number of cations, the 

following basic relationship follows from Eqs 1 and 2: ܸ݀ ൌ   ைܸതതത ݀ ைܰ  ൌ  ܸതതത ݀ ܰ  ܸഥ  ݀ ܰ                                               ሺ3ሻ  

In the bulk crystal, electric neutrality associated with ைܸ··  and ݁ܥᇱ requires that ݀ ܰ ൌ 2 ݀ ܰ ൌ െ2 ݀ ைܰ. Combining this with Eq 3 then gives: 

ைܸതതത  ൌ  െ ܸതതത  െ  2 ܸഥ                                                                  ሺ4ሻ  

In the bulk separating ைܸതതത  into the two components in Eq 4 is unnecessary because of electric 

neutrality. However local neutrality does not hold in the SC layer, and thus ܸതതത and ܸഥ  should be 

treated as separate contributions. 
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We initially assume that the SC layer behaves like a thin film on a thick substrate. With 

isotropic linear elastic behavior, the SC layer stress is biaxial, with ߪሺݖሻ ൌ ௫௫ߪ ൌ ௭௭ߪ ௬௬ andߪ ൌ 0. The relationship between ߪ and the point defects is then given by: ߪሺݖሻ  ൌ  െܯሺሾ ݂ሺݖሻ െ ݂ஶሿ    ሾ ݂ሺݖሻ െ ݂ஶሿሻ                                        ሺ5ሻ                         

where M is the biaxial modulus. The ݂’s are linear strains due to the compositionally induced 

expansion, where ∞ refers to bulk values. Total strain is divided into oxygen vacancy (subscript 

V) and extra electron (subscript e) contributions, following Eq 1. With expected strains ൏ ~1%: 

݂ሺݖሻ െ ݂ஶ  ؆   23 ܸ  න పܸഥ ݀ܿ
ಮ

                                                       ሺ6ሻ 

where ܸ is the molar volume of stoichiometric ceria, ݅ refers to either V or e, and the c’s are 

mole fractions (normalized to the number of O lattice sites). Assuming further that ܸതതത and 

ܸഥ  are constants (valid for dilute solutions), then Eqs 5 – 6 can be combined to give: ߪሺݖሻ ൌ െሺ23/ܯ ܸሻ ሾ ܸതതത ሺܿሺݖሻ െ ܿஶሻ  ܸഥ  ሺܿሺݖሻ െ ܿஶሻሿ                               ሺ7ሻ                           

Existing SC models are based on thermodynamic equilibrium, however, they do not 

incorporate strain energies. To include this, we start with a thermodynamic potential, Γ, that 

includes both elastic and electric field effects: ߁ ൌ ߤ  ܴܶ ln ܽ   ࣠ ߶ െݖ 13 పܸഥ ߪ                                                    ሺ8ሻ  
where ߤ and ܽ are the reference chemical potential and the activity of species ݅. The third 

term on the right side is the contribution from the electric potential, ߶, where ࣠ is Faraday’s 

constant and ݖ is the valence. The last term describes elastic effects. An additional elastic 

contribution should be added to Eq 8 if M varies with composition. However, this can be 

neglected in ceria, because O vacancy concentrations in the SC layer are small even when ߯ is 

large in the bulk (experiments show essentially constant M for small ߯ [26]). The present 

analysis demonstrates that the remaining elastic term in Eq 8 can have a significant impact. 

Thermodynamic equilibrium across the SC layer corresponds to equating ߁ ‘s between 

the surface region and the bulk. Again assuming dilute solutions, this gives: ܿሺݖሻ ൌ  ߯ exp ቈ 2 ܸതതത3 ܴܶ ሻݖሺߪ  exp െ 2ܴ࣠ܶ Δ߶ሺݖሻ൨                                        ሺ9ܽሻ 
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 ܿሺݖሻ ൌ  ܿஶ exp ቈ 2 ܸഥ3 ܴܶ ሻݖሺߪ  exp  ܴ࣠ܶ Δ߶ሺݖሻ൨                                        ሺ9ܾሻ 

   

where Δ߶ሺݖሻ ൌ  ߶ሺݖሻ െ  ߶ஶ, and ߯ is the bulk nonstoichiometry (i.e., in CeOଶିχ). Because ߯ 

specifies the bulk composition, it is appropriate to use ߯ in place of ܿஶ in Eq 9a when vacancies 

are the dominant point defect (i.e., each missing O corresponds to a vacancy). The results in Eq 

9 are identical to the standard model, except for the added stress term. 

The potential difference across the space charge layer can then be evaluated by solving 

the Poisson-Boltzmann equation, given in one dimension by:  ݀ଶΔ߶݀ݖଶ  ൌ  െ ܸ ߦ࣠ 2  ሺ2ܿ – ܿሻ                                                     ሺ10ሻ 

where ߦ is the dielectric permittivity. The standard boundary conditions are: 

 Δ߶ሺ0ሻ ൌ  Δ߶    and    Δ߶ሺ∞ሻ ൌ  0                                               ሺ11ሻ 

which correspond to equilibrium with the surface at z = 0 (i.e., a fixed potential), and to the 

properties of the bulk crystal at z ՜ ∞. 

 A complete description of the defect concentrations and hence the stress across the 

layer is provided by Eqs 8 – 11. It is convenient to rescale this model in terms of normalized 

defect concentrations: ݀ଶ߶݀ݖଶ  ൌ  ଶ ሺܿ̂ – ܿ̂ሻ                                                                ሺ12ܽሻߣ߯ 

                           ܿ̂ሺݖሻ ൌ  expൣെ2߶ െ 2 χ ߚ ߙሺߚሾܿ̂ െ 1ሿ െ  ሺ1  ሻሾܿ̂ߚ െ 1ሿሻ൧                          ሺ12ܾሻ 

 ܿ̂ሺݖሻ ൌ  expൣ߶   χ ߙ ሺ1  ሾܿ̂ߚሻሺߚ െ 1ሿ െ  ሺ1  ሻሾܿ̂ߚ െ 1ሿሻ൧                         ሺ12ܿሻ 

 ߶ሺ0ሻ ൌ  ߶   and   ߶ሺ∞ሻ ൌ  0                                                   ሺ12݀ሻ 

where: 

ߣ ൌ ඥߦ ܸሺܴܶሻ2 ࣠ ; ߶ ൌ ࣠ Δ߶ܴܶ ; ܿ̂ ൌ ܿܿஶ ; ܿ̂ ൌ ܿ߯ ; ߙ  ൌ ைܸതതതଶ 9 ܴܶ ܸ ܯ 2 ; ߚ  ൌ ܸതതതைܸതതത ൌ െ1 െ 2 ܸഥைܸതതത   ሺ12݁ሻ 
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If values of ߙ and ߚ are specified, Eq 12 can be solved to obtain the defect and stress 

concentrations across the SC layer, for different values of ߯ and the boundary condition, ߶.  

Most of the quantities in Eq 12 are known physical properties. For ceria ைܸതതത  is known from 

experiments, and thus ߙ can be calculated. However, it is difficult to directly measure the 

volume changes for the individual defects, ܸതതത and ܸഥ .  Only one of these values is needed to 

determine ߚ, since the other can be obtained with Eq 4. A simple estimate of ܸഥ  is used here, 

based on the 18% increase in ionic radius between Ce3+ and Ce4+. A fluorite unit cell with Ce3+ 

replacing Ce4+ then corresponds to ܸഥ  = 5.46 cm3/mole, which leads to 2.7 = ߚ.  

Calculated profiles obtained by solving Eq 12 numerically are shown in Fig 1. The impact 

of stress is clearly significant here, based on comparisons with the conventional SC model (i.e., 

the dotted lines obtained without stress). For a given set of conditions, the maximum stress 

occurs at the surface (ߪሺ0ሻ), and then decreases as one moves towards the bulk. The calculated 

values of ߪሺ0ሻ in Fig 2a demonstrate that variations in the defect concentrations in the SC layer 

can produce substantial stresses. Contours showing fixed values of ߪሺ0ሻ are also shown in Fig 

2b, as a function of Δ߶ and ߯. The impact of these stresses on the predicted values of ܿ̂ሺ0ሻ then follows directly from Eq 9b.  For example, at 1073 K stresses of ߪሺ0ሻ = -1 GPa and -

10 GPa decrease ܿ̂ሺ0ሻ  by 47.1% and 99.8% respectively (equivalent to Δ߶ decreases of 0.06 V 

and 0.6 V). Thus the stress impact is significant for most of the range shown in Fig 2b. While 

negative values of Δ߶ lead to similar tensile stresses in the SC layer, these values are not 

shown here, primarily because existing experimental evidence corresponds to positive Δ߶ 

values for pure ceria.  

 When the underlying crystal is much thicker than hSC, integrating overߪሺݖሻ gives: 

ௌߑ  ൌ  න ሻஶݖሺߪ
 ൌ ݖ݀ ைܸതതത 3 ܸ ܯ 2    ߯ නൣሺ1  ሻሾܿ̂ߚ െ 1ሿ  െ ሾܿ̂ߚ  െ 1ሿ൧ஶ

  ሺ13ሻ              ݖ݀

As seen in Fig. 1, hSC is typically two to three times the Debye length, ߣ /√߯.  Because this is 

typically on the nm scale, ߑௌ  can often be viewed as a contribution to the surface stress. The 

total effective surface stress is then ߑௌ ൌ ௌߑ   ௌ is the conventional valueߑ ௌ, whereߑ

associated with the actual surface atoms. The results in Fig 3 were obtained with Eq. 13, based 

on numerical solutions to Eq. 12 at T= 1073 K (since ceria defect chemistry is usually studied at 
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elevated temperature). This SC contribution to the surface stress is negative because of the 

volume expansion associated with Ce3+ ions. Since the magnitude of ߑௌ is generally comparable 

to surface free energies, the larger values of ߑௌ  that are predicted in some regions of Fig 3 will 

dominate the surface stress.  

Ceria nanoparticles provide a basis for comparing experimental results to the predicted 

compressive surface stresses. A number of researchers have observed significant increases in 

the lattice parameter, ܽ, as the particle radius, ݎ, decreases [27-33]. This has been attributed to 

volume expansions induced by Ce3+ ions, which is consistent with experiments showing higher 

Ce3+ concentrations as ݎ decreases [28,31,32]. Higher Ce3+ levels have also been observed near 

particle surfaces [31], which is generally consistent with SC models. 

A relatively simple estimate of lattice parameter changes in small spherical particles can 

be obtained from the Laplace pressure:  Δܲ ൌ ݎܵߑ 2    ؆ െ ൬ 1ܧ െ ൰ ሺܽߥ2 െ  ܽሻܽ                                               ሺ14ሻ 

where ܽ is the unstrained lattice parameter, E is Young’s modulus, and ߥ is Poisson’s ratio.  In 

most materials, ߑௌ > 0 (tensile surface stress) imposes compressive stress on the particles and 

reduces ܽ.  This kind of comparison between nanocrystal lattice parameters and Σௌ for planar 

surfaces generally gives good agreement [34].  The negative ߑௌ values in ceria due to SC 

contributions are thus potentially consistent with the experimentally observed increases in ܽ. 

To estimate the average strain note that the direct lattice expansion due to Ce3+ ions inside the 

SC layer is not accounted for in Eq 14.  This additional contribution can be estimated as -ߑௌ  / M 

hSC.  Combining this with the strain induced by surface stress (Eq 14), and using r = 7.5 nm and ߑௌ = -5 J/m2 predicts a 0.6% increase in a.  Experiments with this particle size report increases of 

0.3–0.8% [27-32], which is very good agreement with our model given the nature of this simple 

comparison. A more precise assessment is difficult because the oxygen activity in these 

experiments is not reported (i.e., ߯ is unknown).  At even smaller particle sizes a number of 

researchers have reported larger lattice parameter increases [27-33] which are also nominally 

consistent with large compressive surface stresses. However, the Laplace pressure 

approximation in Eq. 14 is only reasonable if the SC layer thickness is much smaller than ݎ. Even 

at r = 7.5 nm this approximation could be questioned (depending on the exact values of Δ߶ 
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and ߯). As r decreases, the analysis leading to Eq 12 should be modified to properly evaluate 

the stress field in small particles. 

In principle, experiments with single crystal films could also be compared directly to the 

model in Eq 12. However, we are not aware of any direct measurements of this type. In 

polycrystalline titania and ceria films, significant compositional stresses due to grain boundaries 

have been reported [15,35]. These effects are consistent with the proposed SC layer stresses, 

however, direct quantitative analysis of grain boundaries requires a more sophisticated model 

than Eq 12. 

In summary, the principle finding presented here is that near-surface variations in point 

defects can induce stresses that are large enough to significantly alter thermodynamic 

equilibrium. These effects have generally been neglected in standard space charge models. The 

predicted local compressive stresses in CeOଶି are large enough to dominate the effective 

surface stress, and the estimated values are consistent with the large anomalous lattice 

expansions that have been observed experimentally in ceria and other oxide nanoparticles.  

This modified space charge analysis is directly applicable to a wide variety of non-stoichiometric 

ionic solids. Similar effects should also occur at grain boundaries and other solid-solid 

interfaces, where proper treatment of the stress fields requires a modified analysis. In general, 

negative surface stresses of several J/m2 are large enough to significantly alter important 

surface and grain boundaries properties such as dopant solubilities and ion diffusivities. 

Hopefully these predictions will motivate more detailed investigations of these effects. 

 

This work was funded by NSF (primary support from DMR-0805172, VBS also acknowledges 
DMS-0854919 and DMS-0914648). 
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Figure Captions 

 

Figure 1. The solid lines show the defect concentration profiles, ܿ̂ and ܿ̂, obtained by solving 

Eq (12) with 2.7 = ߚ ,2.31 = ߙ, χ = 0.01, and ߶= 7.57 (conditions for CeOଶି at T = 1073 K and Δ߶ = 0.7 eV). The analogous results without considering stress contributions are shown as 

dashed lines. 

 

Figure 2. (a) Predicted stress at the surface, ߪሺ0ሻ, as a function of the composition, χ, for Δ߶= 

0.3 eV and 0.7 eV. (b) Contours showing constant values for ߪሺ0ሻ, as a function of the surface 

potential, Δ߶, and the composition, χ.  The point in both plots corresponds to the case in Fig 1. 

 

Figure 3. Predicted values of Σௌ  obtained from Eq. (13), by solving Eq. (12) with 2.31 = ߙ and ߚ 

= 2.7, for Δ߶ values of 0.3 eV (߶= 3.24), 0.7 eV (߶= 7.57) and 1.0 eV (߶= 10.8).  The point 

plotted here corresponds to the case in Fig 1. 
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