
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Thermodynamics of a Gas of Deconfined Bosonic Spinons
in Two Dimensions

Anders W. Sandvik, Valeri N. Kotov, and Oleg P. Sushkov
Phys. Rev. Lett. 106, 207203 — Published 20 May 2011

DOI: 10.1103/PhysRevLett.106.207203

http://dx.doi.org/10.1103/PhysRevLett.106.207203


LX12196

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Thermodynamics of a gas of deconfined bosonic spinons in two dimensions
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We consider the quantum phase transition between a Néel antiferromagnet and a valence-bond
solid (VBS) in a two-dimensional system of S = 1/2 spins. Assuming that the excitations of the
critical ground state are linearly dispersing deconfined spinons obeying Bose statistics, we derive
expressions for the specific heat C and the magnetic susceptibility χ at low temperature T in terms of
a correlation length ξ(T ). Comparing with quantum Monte Carlo results for the J-Q model, which is
a candidate for a deconfined Néel–VBS transition, we obtain an almost perfect consistency between
C, χ, and ξ. The corresponding expressions for magnon (triplet) excitations are not internally
consistent, however, lending strong support for spinons excitations in the J-Q model.
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The excitations of a quantum antiferromagnet are spin
waves (magnons) carrying spin S = 1. At a conven-
tional quantum phase transition in which the antiferro-
magnetic (Néel) order parameter vanishes continuously
[1, 2], the magnons remain well-defined elementary exci-
tations even at the critical point. The gapped “triplon”
excitations in the nonmagnetic phase also have S = 1.
A different deconfined quantum critical (DQC) point has
also been suggested [3], in which the magnons of a two-
dimensional system fractionalize into independent (de-
confined) S = 1/2 spinons. In the non-magnetic phase,
which in this case is a valence-bond solid (VBS) with
spontaneously broken lattice symmetries [4], the spinons
are confined into excitations which carry spin S = 1 and
S = 0. The DQC proposal is supported by quantum
Monte Carlo (QMC) simulations of a “J-Q” model [5–
9] (an S = 1/2 Heisenberg model including four-spin or
higher-order terms), although deconfined spinons have so
far not been explicitly observed. The DQC scenario vi-
olates the long-held “Landau rule” according to which
an order–order transition breaking unrelated symmetries
should be of first order. While there are studies claim-
ing a generic first-order Néel–VBS transition [10, 11], no
convincing signs of discontinuities of phase coexistence
have have so far been detected in the J-Q model [8].

In this Letter we provide evidence for deconfinement in
the J-Q model based on its thermodynamic properties.
Using a phenomenological ansatz of deconfined bosonic
spinons with linear dispersion ǫ(k) = ck (as in the DQC
theory [3]), we derive expressions for the specific heat and
the magnetic susceptibility. In addition to the spinon ve-
locity c, these quantities depend on the length scale Λ
within which spinons can be regarded as deconfined at
temperature T > 0. In the T = 0 DQC theory [3], this
length in the VBS phase diverges as a power of the cor-
relation length, Λ ∝ ξ1+a, where a > 0 and the standard
correlation length (defined, e.g., in terms of the spin-spin
correlation function) diverges as ξ ∝ |q − gc|−ν as the
critical coupling gc is approached. While the confinement

scale Λ is well defined at T = 0, where it is also associated
with an emergent U(1) symmetry [3, 7], it is at present
not clear how this scale enters when there is a finite den-
sity of thermally excited spinons. We will here present
numerical evidence of an anomalous correction, possibly
logarithmic, to the standard divergence ξ ∼ T−1/z at gc
(with z = 1 expected at a DQC point). We argue that
the confinement scale cannot be separated from the spin
correlation length at T > 0 and use QMC results for
ξ(T ) in lieu of Λ(T ) in the spinon-gas expressions. The
so predicted C(T ) and χ(T ) are almost perfectly satis-
fied in the critical J-Q model, lending strong support to
deconfined spinon excitations.
Quantum-critical models—We will discuss the cases of

spinon and magnon excitations in parallel and consider
two models in which the two scenarios should be real-
ized. The J-Q model provides a test-case for deconfined
spinons and is defined by the hamiltonian [5]

H = −J
∑

〈ij〉

Cij −Q
∑

〈ijkl〉

CijCkl, (1)

where Cij is a singlet projector; Cij = 1/4− Si · Sj . In
the J (Heisenberg) term ij are nearest neighbors on the
square lattice, while in the Q term ij and kl form opposite
edges of a 2×2 plaquette. The ground state has Néel and
VBS order for Q < Qc and Q > Qc, respectively, with
J/Qc = 0.04498(3) according to a recent study [8, 12].
Conventional O(3) T > 0 quantum-critical scaling has

been studied in the past in various dimerized Heisenberg
models (where the hamiltonian itself breaks lattice sym-
metries) [13–17]. To compare with the J-Q model, we
here consider a system with couplings J and J ′ > J ,
with the stronger ones arranged in columns. A recent
high-precision study of this system [12] gave the critical
ratio J ′

c/J = 1.90948(4). Here we consider L×L lattices
with L up to 512, at J ′/J = 1.9095 and J/Q = 0.045 for
the respective models (within the error bars of the best
known critical values). The QMC results are free from
visible finite-size effects at the temperatures considered.
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FIG. 1: (Color online) Correlation length versus inverse tem-
perature for the critical J-Q and J-J’ models. A fit to ξ ∝ 1/T
with a constant correction is shown for the J−J ′ model, while
the faster divergence in the J-Q model has been fitted to two
different forms—a power-law 1/T 1+a with a = 0.22, as well
as 1/T with a multiplicative log-correction.

Below we will quote energies in units of Q = 1 for the
J-Q model and J = 1 for the J-J’ model.

The spin correlation lengths of the two models (using
the standard momentum-space second-moment definition
[12]) are shown in Fig. 1. The expected quantum-critical
1/T behavior is observed in the J-J’ model for T . 0.3,
and some of the deviations from this behavior at higher
temperatures can be accounted for by a constant correc-
tion. In the J-Q model, the divergence is clearly faster.
The behavior can be fitted either to a different power-
law, 1/T 1+a with a ≈ 0.22, or with a multiplicative log-
correction to the 1/T form. In the standard quantum-
criticality scenario [2], a power-law with a > 0 would
imply a dynamic exponent z = (1 + a)−1 < 1. The sus-
ceptibility χ ∼ T 2/z−1 should then be governed by an
exponent 2/z − 1 > 1. The latter behavior is, however,
ruled out by the finding in [8] that χ vanishes as T → 1
slower than T , due to a correction consistent with a fac-
tor ln(1/T ). Thus, a log-correction to the 1/T form of ξ
seems the more likely scenario. Alternatively, the devi-
ation from 1/T could be due to a very slowly decaying
conventional power-law correction, as was recently found
in a different model [18]. We next discuss how the spinon
gas scenario relates the correlation length to the suscep-
tibility and the specific heat.

Spinon gas—Our assumption is that the critical system
can be described as a gas of bosonic spinons with disper-
sion ǫ(k) = [c2k2+∆2(T )]1/2 at T > 0. This dispersion is
valid for magnons at a conventional O(3) quantum phase
transition between the Néel state and a disordered state
(e.g., in dimerized Heisenberg models), in which case the
thermal “gap” ∆ is related to the correlation length ξ
according to ∆ ∝ 1/ξ ∝ T 1/z, with z = 1 [1, 2]. The
gap corresponds to an infrared cut-off. If the spinons are
confined within a length-scale Λ, this should be the scale
to use in the gap; ∆ ∝ 1/Λ. We are not, however, able
to directly compute Λ at T > 0, and it may not even be

possible to separate such a length scale from ξ when the
density of excited spinons is finite, since these spinons
should also contribute to the correlation functions. Here
we will therefore assume that the proper length scale to
use for ∆(T ) is the correlation length ξ discussed above.
In a magnetic field B, a doubly-degenerate spinon level

is split according to

ǫ±(k) =
√

c2k2 +∆2 ± µB ≡ ǫ(k)± µB, (2)

where µ = 1/2. This form with µ = 1 holds also for the
two shifted S = 1 magnon levels (with ǫ0 not shifted).
With the boson occupation number n(ǫ) = 1/(eǫ/T−1)

the magnetization per lattice site for small B is:

M = µF

∫
(

1

eǫ−/T − 1
− 1

eǫ+/T − 1

)

d2k

(2π)2

= µ2F
TB

4πc2

∫ ∞

0

xdx

sinh2[ 1
2

√

x2 + (∆/T )2]
. (3)

In the CP1 DQC theory [3], there are both spinons and
anti-spinons, which contribute equally to thermodynamic
properties. We take this into account above with a factor
F = 2, while for magnons F = 1. The integral can be
computed exactly, giving

χ = µ2F
T

πc2

(

∆/T

1− e−∆/T
− ln(e∆/T − 1)

)

. (4)

For magnons at the usual O(3) transition, ∆/T ≈ 0.96
has been computed in the large-N (number of compo-
nents) limit, which gives [2]

χ1 ≈ (1.0760/πc2)T. (5)

For spinons, we assume ∆ = 1/ξ and use the J-Q results
for ξ shown in Fig. 1. In the accessible temperature win-
dow, it does not matter which of the two fitted forms we
use, since they coincide. In (4) we now have ∆/T → 0
as T → 0, resulting in an infrared divergence of χ/T .
To obtain a simple expression we discuss the modified
power law written as ∆/T = (T/bc)a, which gives the
low-temperature form

χ1/2 =
T

2πc2

[

1 + a ln

(

bc

T

)

+
1

24

(

T

bc

)2a
]

, (6)

where the exponent a = 0.22 and the product bc = 3.70
from the data in Fig. 1. The log-correction is very in-
teresting, as it was already identified in a recent QMC
study of the J-Q model [8]. Using the multiplicative log-
correction instead of the modified power-law in ξ gives a
double-log divergence of χ/T , which with the appropri-
ate parameters cannot be distinguished from the simple
log in the temperature window considered.
The specific heat per unit cell is

CS = (2S + 1)F

∫

ǫ(k)
∂n(ǫ)

∂T

d2k

(2π)2
, (7)
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FIG. 2: (Color online) Temperature dependence of the energy
E relative to the ground state energy E0 with the expected
leading T 3 dependence divided out. The horizontal lines show
the prefactor of the cubic term in the E(T ) fits.

which for spinons leads to the low-T behavior

C1/2 =
2T 2

πc2
× (8)

[

6ζ(3)−
(

T

bc

)2a [
3

2
+ a+ a(1 + a) ln

(

bc

T

)]

]

when the power-law for of ξ is used [and ζ(3) ≈ 1.20206].
Note that the log-correction here is not as dramatic as in
the susceptibility (6). For the O(3) transition

C1 = [36ζ(3)/5πc2]T 2 (9)

was obtained using the large-N value of ∆/T [2, 19].
Energy and susceptibility fits—Apart from the loga-

rithms arising from the correction to ξ ∼ 1/T , the dif-
ferences in the thermodynamics between spinons and
magnons arise mainly from the degeneracy factors and
µ. Note that once ∆/T has been fixed, by assuming
∆ = 1/ξ and using numerical results for ξ (or using the
large-N result for magnons [2, 19]) the velocity c is the
only free parameter. We can then test the internal con-
sistency of the picture by fitting QMC data for χ and
C. Note that in the case of the J-J’ model all quantities
should be normalized per two-site unit cell.
We first fit low-T results for the internal energy based

on the leading specific heat forms (8) and (9). In addi-
tion to the T > 0 QMC data, we also use the ground
state energy extrapolated to L = ∞ based on T ∝ 1/L
calculations. Fig. 2 shows E(T ) after E0 has been sub-
tracted and T 3 has been divided out. The low-T behavior
gives the spinon velocity c = 2.55 for the J-Q model and
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FIG. 3: (Color online) Susceptibility divided by T . In the J-Q
graph the dashed curve is Eq. (6) with a = 0.22, c = 2.6, and
bc = 3.7. The solid curve is the full form (4) with the same
parameters. The curve in the J-J’ graph is a second-order
polynomial. The insets show the data on log scales.

the magnon velocity c = 1.38 for the J-J’ model (which
should be interpreted as c =

√
cxcy since the J-J’ model

is anisotropic). While there are corrections to the T 3

behavior in Fig. 2, the low-T results for the J-Q model
are not sufficiently accurate to test the correction in (8).
It is anyway doubtful whether the spinon gas model can
correctly capture subleading corrections.

The susceptibilities of both models are shown in Fig. 3
with T divided out. In the case of the J-J’ model, there
are significant corrections to the asymptotic T → 0 con-
stant behavior expected with (5). A second-order poly-
nomial fit to the low-T data is shown. The extrapolated
T = 0 susceptibility corresponds to a spin-wave velocity
c = 1.36 in (5), in excellent agreement with the value
obtained from the energy.

For the J-Q model, we first use (8) with only the lead-
ing log-correction and fix a = 0.22 and bc = 3.7 from the
power-law fit to ξ in Fig. 1. The best fit to the low-T
susceptibility is achieved with c = 2.60, within 2% of the
value obtained above from the energy fit. Using the same
parameters in full form (4) shows only minor corrections
to the asymptotic low-T form, as also shown in Fig. 3.

Using magnon parameters (F = 1, µ = 1 instead of
F = 2, µ = 1/2) in the J-Q fits leads to a factor 2 in (6)
and 3/4 in (8), and, thus, completely inconsistent veloc-
ities extracted from C and χ (differing by more than a
factor 1.6). The excellent agreement for spinon param-
eters lends strong support to the spinon-gas picture. It
should be noted that we have assumed ∆ = 1/ξ in the
fits for the J-Q model, while we may only expect ∆ = d/ξ
with d of order 1. Physical observables depend weakly on



4

d and the consistent c-values extracted from two different
quantities justify the use of d = 1 a posteriori.
Wilson ratio—The Wilson ratio of the J-Q model ex-

hibits a weak T → 0 divergence. From Eqs. (6) and
(8) we obtain W1/2 = χT/C = w1/2[1 + a ln(bc/T )],
with w1/2 = 0.0346(2). The log-correction again relies
on the particular power-law correction used in the fit to
ξ in Fig. 1, and should most likely in actuality be re-
placed by a double-log corresponding to a log-correction
to ξ ∼ 1/T . For the J-J’ model we get W1 = 0.1262(6),
in good agreement with W1 = 0.1243 from Eqs. (5) and
(9). Including the next term in the 1/N expansion of the
large-N O(3) theory [2] makes this agreement worse by
several percent, however. Note that if the log-correction
is disregarded, W1/2 is only about 1/4 of W1.

Conclusions and discussion—We have tested a model
of bosonic spinons against QMC data for the critical
J-Q model, which is a promising candidate for a DQC
point. The correlation length ξ diverges faster than 1/T
as T → 0 (most likely due to a log-correction) and this
can be related to the divergence (log or double-log) of
the susceptibility χ/T that was previously observed in
the J-Q model [8]. The velocity entering in χ agrees al-
most perfectly with the velocity needed to fit the specific
heat C. Thus, highly non-trivial relationships between ξ,
C, and χ predicted from the spinon gas have been con-
firmed. The critical behavior does not fit the standard
O(3) picture with S = 1 excitations [2], which we have
investigated here in the context of a dimerized model.

Although our study lends support to the DQC sce-
nario for the Néel–VBS transition, the phenomenological
approach does not address the mechanism of deconfine-
ment. The anomalous correction to the 1/T divergence
of ξ is puzzling and may be intimately related to the
deconfinement. Log corrections at T > 0 should also
have counterparts at T = 0. Future work will hope-
fully explain, e.g., anomalous corrections to the spin
stiffness of the J-Q model [8] and its impurity response
[9]. An important missing link is how these corrections
could arise from the CP1 field theory of the DQC point
[3], i.e., whether the theory is complete in its present
form or whether some ingredient is still missing. No logs
were found in large-N treatments of the CPN−1 theory
[21, 22], but such corrections may appear for small N .
A log-enhancement of the susceptibility was found in a
U(1) gauge theory with fermions [23]. In that case, there
is also a correction to the specific heat, which makes the
Wilson ratio non-divergent. The spinon gas approach
with Fermi statistics gives no logs and the Wilson ratio
equals 0.0320, which agrees with Ref. 21 (with µ = 1/2).

The agreement between the critical J-Q model and
the non-interacting spinon gas is remarkable, considering
that the spinons in the DQC theory are only marginally
deconfined (with interactions mediated by the gauge
field) [3]. Apparently, beyond their underlying role in de-
termining the correlation length (with its anomalous cor-

rection), these interactions seem to only have very small
effects on the thermodynamics.

It would be useful to have an independent estimate of
the spinon velocity. A value c = 2.4(3) was extracted
for the critical J-Q model in [6], using a cubic space-
time geometry in QMC simulations. Although the value
agrees well with ours, it is unclear whether the method
applies here (but it works for magnons in the Néel state
[20]). In future studies we plan to extract c from the
imaginary-time dependent spin-spin correlations.

We finally note that there are no indications of a first-
order transition in the J-Q model (with previous claims
[10, 11] not supported by later results [8, 9]). As a
matter of principle, however, extremely weak discontinu-
ities cannot be ruled out based on numerical data alone
(though the first-order scenario appears increasingly un-
likely). What we have shown here is that, regardless of
the ultimate nature of the transition, spinons are decon-
fined on length scales sufficiently large to have significant
consequences for the thermodynamics.
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