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Recent theoretical investigations have shown that spin currents can be generated by passing
electric currents through spin-orbit coupled mesoscopic systems. Measuring these spin currents has
however not been achieved to date. We show how mesoscopic spin currents in lateral heterostructures
can be measured with a single-channel voltage probe. In the presence of a spin current, the charge
current Iqpc through the quantum point contact connecting the probe is odd in an externally applied
Zeeman field B, while it is even in the absence of spin current. Furthermore, the zero field derivative
∂BIqpc is proportional to the magnitude of the spin current, with a proportionality coefficient that
can be determined in an independent measurement. We confirm these findings numerically.

PACS numbers: 73.23.-b, 72.25.Dc, 85.75.-d

Introduction. One of the main challenges of semicon-
ductor spintronics is to convert hardly accessible spin
currents and accumulations into easily measured electric
currents or voltages [1]. While in metals, this challenge
is rather successfully met by means of ferromagnetic de-
tectors [2], uncovering spin currents and accumulations
in lateral semiconductor heterostructures is significantly
harder, because ferromagnets do not connect well to two-
dimensional electron gases. Instead, one uses in-plane
magnetic fields that couple dominantly to the spin of the
electrons. Thanks to the resulting Zeeman field a quan-
tum point contact (QPC) has been polarized [3] and spin
orientations in few-electron quantum dots [4–6], spin cur-
rents flowing out of Coulomb blockaded quantum dots [7]
and spin currents injected from a polarized point con-
tact [8–10] have been converted into electrostatic volt-
ages. In all these instances, large magnetic fields B ≫ 1
Tesla are required both for generating and measuring
spins. These protocols are therefore not viable for mea-
suring independently generated spin currents – such as,
for instance, the theoretically predicted magnetoelectric
mesoscopic spin currents [11–17] – because the latter are
unavoidably modified by such large Zeeman fields [18].

In this manuscript, we propose a novel scheme to mea-
sure mesoscopic spin currents. The basic principle of our
proposal is that a pure spin current flowing through a
QPC results in an odd dependence of the charge current
Iqpc(B) on an externally applied Zeeman field B. Setting
the voltage behind the QPC such that Iqpc(B = 0) = 0,
the zero-field derivative ∂BIqpc|B=0 is proportional to
the spin current at B = 0, with a proportionality co-
efficient given by the ratio of the g-factor and the en-
ergy resolution of the QPC. This prefactor can be ex-
tracted independently, either at a large magnetic field, as
sketched in Fig. 1a, or determining the QPC transcon-
ductance width at B = 0 if the g-factor is known. Thus,
in our scheme the spin current can be quantitatively de-
termined by measuring an electric signal. The scheme
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FIG. 1: a) QPC transconductance dG/dVg at a large magnetic
field B >

∼ 5 T showing how the ratio of the g-factor and the
QPC energy resolution h̄ω in Eq. (1) can be determined. b)
Proposed setup for measuring mesoscopic spin currents. A
voltage probe is connected to a two-terminal lateral quantum
dot via a gate-defined (with gate potential Vg) single-channel
QPC. The spin current through the QPC is converted into
an electric signal by applying a sub-Tesla in-plane magnetic
field.

works in multi-terminal setups, such as the one sketched
in Fig. 1b, which are free of Onsager/reciprocity rela-
tions [19, 20], since the latter impose Iqpc(B) = Iqpc(−B)
in two-terminal geometries. For a few-micron quantum
dot in n-doped GaAs, we estimate a signal of 10 pA in
a field B ≃ 0.5 T, for which currents are only weakly
different from their zero-field value [18] and the QPC is
far from polarization. Because Iqpc(B = 0) = 0, this
signal is well above the current detection threshold. The
scheme works at smaller fields in materials with larger
spin-orbit coupling such as p-type GaAs [21], which are
expected to carry larger spin currents.

Geometry and main result. While our measurement
scheme is rather general and in particular works inde-
pendently of the source of spin current, we focus on a
three-terminal ballistic quantum dot as shown in Fig. 1b.
An electric current is driven by a voltage bias V = V2−V1

applied between terminals one and two. A third termi-
nal is connected to the dot through a QPC. The ter-
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minals carry N1,2 ≫ 1 and N3 = 1 spin-degenerate
transport channels. We assume that spin-orbit interac-
tion is strong enough that the spin-orbit time is shorter
than the electronic dwell time inside the dot. Spin ro-
tational symmetry is then totally broken and the charge
current is generically accompanied by spin currents flow-
ing through each terminal, with a typical magnitude

I
(α)
1,2,3 = O(e2V/h) [13–15, 17]. Note we use α ∈ {x, y, z}
for spin and α = 0 for charge quantities, respectively.
Our goal is to measure the spin current through termi-
nal three. To that end, the terminal is initially a volt-
age probe, with V3 and the gate potential Vg defining

the QPC set such that no current flows, I
(0)
3 = 0, and

the QPC transmission Γ = G/(2e2/h) is about one half,
with the QPC conductance G. As we will show below,
the spin current through terminal three can be converted
into an electric signal when an in-plane magnetic field is
applied. Our main result is the relation

I
(α)
3 (B = 0) ≃

h̄ω

πµ
∂BI

(0)
3 |B=0 , (1)

between the spin current I
(α)
3 in the direction α along

the magnetic field B and the zero-field derivative of the

charge current I
(α=0)
3 ≡ Iqpc. Here, µ = gµB/2 is the

effective magneton in the dot’s material and h̄ω gives the
QPC energy resolution. Both quantities can be extracted
independently of the measurement of the spin current,
by looking at the QPC transconductance dG/dVg (see
Fig. 1a). It is therefore possible to quantitatively measure
spin currents. We are unaware of other proposals for such
quantitative measurement.
Scattering approach to transport. We briefly sketch our

theory. In linear response, charge and spin currents in the
terminals are related to voltages by the relation [13, 20]

I
(α)
i =

e2

h

∑

j

(

2Niδijδα0 − T
(α)
ij

)

Vj , (2)

assuming no spin accumulation in the leads. The gener-
alized transmission coefficients are given by

T
(α)
ij =

∑

m∈i,n∈j

Tr
(

t†mnσ
(α)tmn

)

, (3)

with Pauli spin matrices σ(α) (σ(0) is the identity ma-
trix). The 2 × 2 matrices tmn are transmission elements
of the scattering matrix. They alternatively define the
transmission probabilities T σσ′

ij =
∑

mn |(tmn)σσ′ |2 for an
electron with spin σ′ impinging in channel n of terminal
j to exit in channel m of terminal i with spin σ.
From now on we focus our discussion on the QPC

charge current I
(0)
3 and spin current I

(α)
3 . To incorpo-

rate the QPC and its B-dependence into our theory, we
make the following two assumptions. First, we model the
QPC as a spin-diagonal 2×2 matrix, whose elements de-
pend only on the Zeeman energy ±µB, thus on the spin

of exiting electrons. Accordingly, we write

T σσ′

3i (B) ≈ τσσ
′

3i (B)Γ(EF − σµB) , i = 1, 2, (4)

with the transmission τσσ
′

3i defined when the QPC fully
transmits both spin species. Equation (4) is valid if, upon
reflection from the probe, the electron has a negligible
probability to come back to the probe again. This condi-
tion is satisfied for N1+N2 ≫ N3. The validity of Eq. (4)
is confirmed by our numerical results, where it does not
enter.
The QPC transmission Γ is a function of the particle’s

kinetic energy, with σ = ± for spins aligned/anti-aligned
with B. We take the standard expression [22]

Γ(EF ) = {1 + exp[−2π(EF − Vg)/h̄ω]}
−1

, (5)

with the gate voltage Vg defining the QPC and h̄ω its en-
ergy resolution. The exact form of Γ(E) is unimportant.
Second, we assume that the QPC has a high sensitivity
to the Zeeman field, so that in Eq. (4), Γ(EF − σµB)
varies faster than τσσ

′

3i (B) with B.

The condition that I
(0)
3 (B = 0) = 0 translates into

V3 = (T
(0)
31 V1 + T

(0)
32 V2)/(T

(0)
31 + T

(0)
32 ). The spin current

reads

I
(α)
3 =

e2

h

[

T
(α)
31 (V3 − V1) + T

(α)
32 (V3 − V2)

]

, (6)

and the zero-field derivative of the electric current is

∂BI
(0)
3 |B=0 =

e2

h

(

∂BT
(α)
31 |B=0V1 + ∂BT

(α)
32 |B=0V2

)

.

(7)
Combining Eqs. (4-7) directly gives Eq. (1).
When Vg = EF we write Γ(EF − σµB) = 1/2− σγ(B)

and straightforwardly obtain

I
(0)
3 =

e2

h

{

[τ
(0)
31 (B)Γ(0) + τ

(α)
31 (B)γ(B)](V3 − V1)

+[τ
(0)
32 (B)Γ(0) + τ

(α)
32 (B)γ(B)](V3 − V2)

}

. (8)

We defined τ
(0)
ij =

∑

σσ′ τσσ
′

ij , and τ
(α)
ij =

∑

σσ′ στσσ
′

ij .
In the absence of spin-orbit interaction, and assuming
that B has no orbital effect, B ↔ −B amounts to inter-
changing “+” and “-” spin directions along α, in which

case τ
(0)
3i (B) = τ

(0)
3i (−B), but τ

(α)
3i (B) = −τ

(α)
3i (−B) for

α 6= 0. Noting that γ(B) is an odd function of B we
conclude that in absence of spin-orbit interaction, hence

of spin current at B = 0, I
(0)
3 is even in B. A simi-

lar conclusion is reached for a two-terminal geometry for

which τ
(0)
ij (B) = τ

(0)
ji (B) = τ

(0)
ij (−B) [19, 20]. This cor-

roborates the conclusion of Ref. [23], that conductance
measurements at magnetic fields of opposite directions
cannot access spin currents in two-terminal geometries.
Numerical model and results. Having discussed our

theory, we now illustrate it numerically. We consider a
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two-dimensional quantum dot in the single band effective
mass approximation. The Hamiltonian for conduction
electrons reads

H =
p2

2m
+ v(r) + µB · σ +

h̄

2mlbr
(σxpy − σypx) , (9)

with the electron effective mass m, the momentum op-
erator p = −ih̄∇, the in-plane magnetic field B, with
|B| = B, and the vector σ of Pauli matrices. We specified
to Bychkov-Rashba spin-orbit interaction, parametrized
by the spin-orbit length lbr, but stress that our theory
is equally valid for other forms of spin-orbit interaction.
The potential v(r) models both the dot’s hard wall con-
finement and a smooth disorder inside the dot. The latter
is tailored to minimize direct transmission from lead to
lead and make our numerics as generic as possible.
We take leads as semi-infinite waveguides, without

spin-orbit interaction. Spin currents in the leads are then
well defined [24]. The QPC is modeled as a narrowing
of the dot towards the third lead through an inverted
parabolic potential

vQPC(r
′) = Vg −mω2x′2/2 . (10)

Here the primed coordinate is measured from the QPC
center, Vg is the gate potential used to tune the QPC
transmission, and h̄ω sets the QPC energy resolution.
These parameters are model-dependent, but their ratio
has a clear experimental meaning in terms of the B-field
response of the QPC transconductance dG/dVg. This is
illustrated in Fig. 1a. Equation (10) is consistent with
the transmission given in Eq. (5). As argued above, our
measurement scheme works best when the QPC is most
sensitive to energy variations and accordingly we set its
potential at the Fermi energy, Vg = EF .
We use material parameters corresponding to GaAs

heterostructures, i.e. m = 0.067me, with me the free
electron mass, g = −0.44, and we vary EF ∈ [3, 10] meV.
Leads 1 and 2 are 50 nm wide, corresponding to up to
three open transport channels in the considered energy
range. The terminal voltages are V1 = −V2 = 50 µV and

V3 is set such that I
(0)
3 (B = 0) = 0. For the QPC we

set h̄ω ≈ 0.18 meV, corresponding to a spin resolution
at B ≈ 6 T, and we take it to be 1.2 µm long to ob-
tain numerically sharp conductance steps. The temper-
ature effects on the QPC transmission can be neglected
if kBT ≪ h̄ω, which is fulfilled at sub-Kelvin tempera-
tures. Our numerics limits the dot linear size to about
200 nm, and accordingly we scale down the spin-orbit
length to lbr = 100 nm, about an order of magnitude
stronger than is typical for GaAs heterostructures, where
ten times larger dots have broken spin rotational sym-
metry [25]. As an unwanted numerical artifact the QPC
itself affects the spin, being much longer than the spin-
orbit length. These effects are minimal in the presence
of only one type of spin-orbit interaction and we choose
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FIG. 2: (Color online) Comparison of the spin current

I
(α)
3 (B = 0) (red line; right y axis) and the zero-field deriva-

tive ∂BI
(0)
3 |B=0 of the charge current (black line; left y axis)

measured at terminal 3, as a function of the Fermi energy EF .
The tags a-c refer to panels in Fig. 3.

the Bychkov-Rashba one. We checked, but do not show
that our numerical results are qualitatively unchanged
for other types of spin-orbit interaction.

We first illustrate the validity of Eq. (1) in Fig. 2.
We see that the zero-field derivative of the charge cur-
rent in lead 3 faithfully follows the spin current, despite
large fluctuations of the latter as the Fermi energy is var-
ied. The two quantities are almost perfectly correlated,
except close to 7 meV, where the number of channels
in leads 1 and 2 artificially jumps from 2 to 3 due to
the way we model the leads. This is a numerical arti-
fact. We numerically calculated the current derivative as

∂BI
(0)
3 |B=0 = [I

(0)
3 (B/2)−I

(0)
3 (−B/2)]/B with B = 10−3

T. Experimentally, however, the magnetic field must be
large enough that the current change is measurable, but
still small enough that (i) it does not generate mesoscopic
fluctuations of the transmission coefficient τσσ

′

3i (B) [see
Eq. (4)], (ii) it does not polarize the QPC, since this

would make I
(α)
3 saturate, and (iii) it does not freeze

spin-orbit interaction inside the dot. The upper bound
on B comes from (i) since, according to Ref. [18], τσσ

′

3i (B)
decorrelates at a field of about 1 Tesla for a ballistic mi-
cron sized GaAs dot, while bounds on (ii) and (iii) are
at B >

∼ 5 T or more. Limiting ourselves to fields of 0.5
Tesla, we estimate from Fig. 2 that a current sensitivity
of about 10 pA is sufficient for spin-to-charge conversion
of typical spin currents in ballistic lateral dots in GaAs.

We finally focus on the parameter sets for the data
points labeled “a”, “b” and “c” in Fig. 2, corresponding
to negative, positive, and zero spin current at B = 0
respectively. The first three panels of Fig. 3 show the

magnetic field dependence of I
(0)
3 and I

(α)
3 in these three

instances. The data clearly illustrate that the sign and
magnitude of the spin current at B = 0 is reflected in
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FIG. 3: (Color online) Spin (red lines) and charge (black lines)
currents in terminal 3 as a function of the in-plane magnetic
field B. a)-c): Spin-orbit coupled dots corresponding to the
labeled data points in Fig. 2. Dotted lines show the slope
of the charge current at B = 0. d): Dot without spin-orbit
interaction (solid lines) and dot with voltages V1 = V2 =
V/2 = −V3 (dashed lines).

the slope of the electric current. We furthermore see that
the electric current is linear up to magnetic field of 1-2
Teslas, up to where, therefore, the zero-field derivative
of the electric current can still be extracted. Fig. 3d
additionally shows that the current is exactly even in B
in the absence of spin current. This would happen in the
absence of spin-orbit interaction, or if the leads 1 and 2
are set to the same voltage, biased with respect to the
single-channel lead 3. The latter case provides a simple
check of our method, as in this setup the spin current is
forbidden [26, 27].
While we focused on a QPC set to a maximal sen-

sitivity, Γ|B=0 = 1/2, our theory remains valid away
from there [or for a QPC with a transmission differ-
ent from the one in Eq. (5)] provided one substitutes
πµ/h̄ω → ∂BlnΓ|B=0 in Eq. (1). Also, we considered V3

fixed while changing B. An alternative is to set it such

that I
(0)
3 (B) = 0. Then Eq. (1) is replaced by

I
(α)
3 (B = 0) ≃

h̄ω

πµ

e2

h
[2− T

(0)
33 ]∂BV3(B)|B=0 . (11)

The spin current can thus also be extracted from a volt-
age measurement, however this additionally requires to

measure T
(0)
33 .

Conclusions. Our theoretical and numerical investi-
gations show how mesoscopic spin currents can be con-
verted into electric signals by measuring the magnetic-
field response of the electric current through a QPC.
Qualitatively, the presence or absence of a spin current
is directly reflected in the symmetry of the electric cur-
rent through the QPC. We moreover demonstrated that,
beyond emphasizing the presence of a spin current, our

measurement scheme renders the magnitude of the cur-
rent quantitatively accessible, since the proportionality
coefficient in Eq. (1) can be experimentally extracted
from the transconductance of the QPC at a large Zee-
man field. We estimate that typical spin currents flowing
in GaAs quantum dots with broken spin rotational sym-
metry have a measurable electric signature at magnetic
fields that are low enough that the targeted spin current
is not altered by the measurement process. Finally, we
stress that our scheme works independently of the source
of spin current.
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