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Expansion dynamics of interacting fermions in a lattice are simulated within the one-dimensional
(1D) Hubbardmodel, using the essentially exact time-evolving block decimation (TEBD) method. In
particular, the expansion of an initial band-insulator state is considered. We analyze the simulation
results based on the dynamics of a two-site two-particle system, the so-called Hubbard dimer. Our
findings describe essential features of a recent experiment on the expansion of a Fermi gas in a
two-dimensional lattice. We show that the Hubbard-dimer dynamics, combined with a two-fluid
model for the paired and non-paired components of the gas, gives an efficient description of the
full dynamics. This should be useful for describing dynamical phenomena of strongly interacting
Fermions in a lattice in general.

PACS numbers: 71.10.Fd , 03.75.Ss, 73.20.Mf

Important physical phenomena such as magnetism
and high-temperature superconductivity are often ap-
proached by theories based on the Hubbard model [1, 2]
which describes interacting particles in a lattice. Within
ultracold gas systems [3, 4], the Hubbard model can be ef-
ficiently realized and studied in experiments with bosonic
[5] and recently with fermionic atoms [6, 7]. Intriguingly,
the dimension can be easily controlled. Low-dimensional
systems such as nanowires, iron pnictides and graphene
are currently highlighted topics of research. Models for
the quantum many-body physics of 2D and 1D systems
can explored with ultracold gases, c.f. recent experiments
on fermions in one dimension [8] and expanding fermions
in a 2D lattice [9]. For one-dimensional systems, an ad-
vantage is that the experiments can be compared to exact
theoretical descriptions. However, although the ground
state and static properties of one-dimensional systems
are known to an impressive degree [1, 11], dynamics is
largely unexplored. Work on theory and simulation of
dynamical properties of interacting fermions in 1D has
recently been emerging [12].

In this Letter, we study with exact numerical meth-
ods the expansion of fermions within the one-dimensional
Hubbard model. We show that the resulting complex dy-
namics can be efficiently described by a two-fluid model
in which we deduce the dynamics of the fluids from the
dynamics of a Hubbard dimer. Our results explain sev-
eral main features of the experiment [9] performed in 2D,
and give exact predictions for future experiments in 1D.
The simple Hubbard-dimer two-fluid model that we have
developed provides a basis for the description of various
types of expansion, collision and oscillation dynamics for
fermions in lattices.

We use the time-evolving block decimation (TEBD)
algorithm [13] to describe the time evolution generated
by the Hubbard Hamiltonian HH = U

∑

i n̂i,↑n̂i,↓ −
J
∑

i σ=↑,↓ c
†
i σci+1 σ + h.c., given an initial state |φ(0)〉,
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FIG. 1: (color online) Schematic representation of the initial
state: the middle part of the lattice is fully occupied (Oi) and
the rest is empty (Ei). Sites EL, OL and OR, ER represent
the left and right edge of the cloud, respectively.

where n̂i,σ = c†i σci σ with c†i σ and ci σ representing the
creation and annihilation of a fermion with spin σ at
the site i = 1 . . . L. Moreover, the initial state is given
by |φ(0)〉 = |∅〉1 . . . |∅〉EL

| ↑ ↓〉OL
. . . | ↑ ↓〉OR

|∅〉ER
. . . |∅〉L

(see Fig. 1). The initial state consists thus of a band in-
sulator occupying the central OL −OR sites of an other-
wise empty lattice. In the simulation we have considered
L = 150, EL = 66, OL = 67, OR = 86, ER = 87, the
Schmidt number ξ = 150, and J = 1. Our code allows
us to access the expectation value of the (spin-resolved)
local particle number ni ↑(t) and ni ↓(t) along with the lo-
cal double occupancy ni ↑↓(t) = 〈φ(t)|n̂i ↑n̂i ↓|φ(t)〉. Note
that ni ↓(t) = ni ↑(t) since the problem is spin symmet-
ric. In our analysis we will show that the evolution
of the initial state can be described in terms of a two-
fluid model where the two fluids are represented by sin-
gle particles and doublons as suggested by the Bethe-
ansatz solution of the Hubbard model [1] and has been
shown in the context of imbalanced Fermi gases [14–

18]. The doublons are excitations of the form c†i ↑c
†
i ↓|∅〉

and the single (unpaired) particles are defined as c†i σ|∅〉
(σ =↑, ↓). The local number of doublons is given by
ni ↑↓(t), while the number of unpaired (up) particles is
given by nun

i ↑ (t) = ni ↑(t)− ni ↑↓(t).

In Figs. 2 and 3,
√

ni ↑(t) and
√

ni ↑↓(t) are depicted
for U = 0.0 and U = ±10.0. We are plotting the square
roots of the densities since this highlights low density
features (see the supplementary material for the full den-
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FIG. 2: (color online) Time evolution of
√

ni ↑(t) (above) and
√

ni ↑↓(t) (below) for |U | = 0.0. The free-particle nature of
the expansion is clear from the absence of separate doublon
expansion wavefronts.

Lattice site

T
im

e 
(1

 / 
J)

 

 

20 40 60 80 100 120 140

4

8

12

16

20

24

28
0

0.2

0.4

0.6

0.8

1

Lattice site

T
im

e 
(1

 / 
J)

 

 

20 40 60 80 100 120 140

4

8

12

16

20

24

28
0

0.2

0.4

0.6

0.8

1

FIG. 3: (color online) Same as Fig. 2 for |U | = 10.0. For this
interaction it is possible to distinguish the two wavefronts.

sity plots). As in general for the spin-balanced Hubbard
model [1], the density distributions evolve in time exactly
in the same way for U and −U . This U ↔ −U symme-
try holds also for all observables for all interactions and
it was indeed observed also in the experiment [9].

In the non-interacting case in Fig. 2, both particles and
doublons are expanding at the speed of 2J , corresponding
to the highest group velocity allowed by the dispersion
relation (see supplementary material). For strong inter-
actions (Fig. 3), we see two separate wavefronts. Such
separation into two types of wavefronts is clearly observ-
able for interactions |U | > 3.0. The outermost wavefront
consists of fully unpaired particles expanding at the of
speed 2J , like in the U = 0 case. In contrast doublons

expand at the speed of 4J2/U (see supplementary mate-
rial for the explanation of these results).
Intermediate interactions 0.5 ≤ |U | ≤ 3.0 show a more

complicated behaviour. The separate expansion fronts
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FIG. 4: (color online) Unpaired particle expansion n
un
i ↑ (t) for

|U | = 5.0, exhibiting the oscillations described in the text.
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FIG. 5: Unpaired popula-
tion dynamics n

un
EL+OL,↑(t)

for |U | = 5.0 and |U | = 10.0.
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FIG. 6: The frequency given
by the FT of n

un
EL+OL,↑(t)

(from TEBD numerics)
compared to the frequency√
U2 + 16J2 obtained by

solving the two-site model.

are no longer well distinguishable, suggesting a stronger
interplay between single particles and doublons. Mov-
ing to even lower interactions, the unpaired particles and
the doublons behave similarly to the case of U = 0.
Let us now examine the time dependence of the num-
ber of unpaired (up) particles nun

i ↑ (t) for |U | = 5.0 (Fig.
4). Initially the dynamics in the band insulator cloud is
Pauli blocked, since neighbouring lattice sites in the cen-
ter have unit density for both spin up and down. There-
fore the unpaired expansion fronts are created at the
edges of the cloud. Intriguingly, nun

i ↑ (t) shows damped
oscillations at the edges associated with the emission of
unpaired particles into the empty lattice. Considering
the time evolution of nun

EL,↑ + nun
OL,↑ (the two edge sites)

over the whole interaction range |U | = 0.0 − 15.0 (see
Fig. 5 for |U | = 5.0, 10) we find that there are fewer pe-
riods of oscillations for lower interactions (for |U | = 1.0
only one broad oscillation peak is visible) and the oscil-
lation frequency increases with interaction strength, see
supplementary material for a general survey of the data.
The evolution of doublons into unpaired particles plays

a key role in the expansion physics. For this reason, we
focus now on the explanation of the oscillations in the
case of high interactions, see Figs. 4 and 5. Our hypoth-
esis is that one can consider the edges of the cloud (sites
EL, OL and OR, ER) at short timescales as two-site sys-
tems (Hubbard dimers [1, 11]). Focusing on the EL/OL

dimer, the system can be described as an initially empty
state |∅〉 in the left lattice site EL and a doublon | ↑↓〉 in
the right lattice site OL. The dynamics of the dimer with
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FIG. 7: The height of the
first peak of n

un
EL+OL,↑(t)

(from TEBD numerics) com-
pared to the amplitude ob-
tained by solving the two-site
model.
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FIG. 8: Change of the ampli-
tude of ñ

un
EL,↑(t) oscillations

after t = 3π√
U2+16J2

, com-

pared to the change of am-
plitude between the first and
second peaks of nun

OL+EL,↑(t)
observed in TEBD numerics.

this initial state can be solved analytically by diagonal-
izing its Hamiltonian (see supplementary material). As
a result, in the two-site problem, the population of un-
paired up particles on the two sites EL and OL is given
by (the tilde refers to the Hubbard dimer model):

ñun
EL+OL,↑(t) =

1− cos(
√
U2 + 16J2t)

2 + U2

8J2

. (1)

We extract the oscillation frequencies from the numer-
ical Fourier transform (FT) of nun

EL+OL,↑ and compare

its peaks to the oscillation frequency
√
U2 + 16J2 in (1)

(see Fig. 6). Moreover, we compare the height of the first
peak of the unpaired density oscillations (seen in Figs. 4

and 5) to the amplitude 8/
(

16 + U2

J2

)

, in Fig. 7.

The agreement is good considering that, for longer
times, the FT of nun

EL+OL,↑(t) has additional contribu-
tions stemming from the hopping between the dimer and
the rest of the chain. However, as the frequency is ap-
proximately U in the high interaction limit, one might
claim that the frequency correspondence could be ob-
tained from simple energy arguments. Therefore, to fur-
ther confirm the validity of the Hubbard Dimer model,
we now move on to examine whether the two-site model
coupled to the next adjacent sites explains the decay ob-
served in nun

EL+OL,↑(t) (see Fig. 5). Let us define the
damping D to mean the decrease of the amplitude of the
unpaired density oscillations, compared to t = 0. We pro-
pose that the damping should be equal to the probabil-
ity of having an unpaired particle in the Hubbard dimer
times the probability for this single particle tunnelling
out of this system. The probability for the single particle
tunnelling (obtained by solving the two-site system with
the initial state |∅, ↑〉) is given by sin2(J t). Combining
this result with Eq.(1), we obtain the damping at a given
time τ :

D(τ) = 2

∫ τ

0

1− cos(
√
U2 + 16J2t)

2 + U2

8J2

sin2(J t)dt, (2)

where the factor of two comes from the particle-hole sym-
metry: particles leaking out from the dimer to the left
(to EL − 1) are mirrored by holes leaking to the right
(to OL+1) thus generating particle-like expansion fronts
emitted out of the initial cloud and hole-like expansion
fronts emitted into the cloud. When the particle-like and
hole-like expansion fronts meet interference in the un-
paired particle density is visible, see Fig. 4.

By comparing the decay predicted in Eq. (2) to the
numerics, we observe that, for the duration of the first
half-period, the decay is negligible. This is in accordance
with the height of the first peak being equal to the two-
site oscillation amplitude, as shown in Fig. 7. After three
half-periods we compare the damping as predicted by Eq.
(2) to the change of amplitude between the first peak and
the second peak seen in numerics, see Fig. 8. The two-
site model is again in good agreement with TEBD for
|U | > 3.0. The time beyond which Eq. (2) fails to de-
scribe the expansion physics is when the population of
unpaired particles in the sites OL+1, EL−1 becomes sig-

nificant. This occurs when the sin2(Jt) = 1−2cos(2Jt)
2

term is no longer close to zero, limiting our short time
analysis to times t << π

2
1
J
. When U is sufficiently large,

the Hubbard dimer oscillations occur in much shorter
timescale than the single particle tunneling does. In other
words, a large number of oscillations occur in the win-
dow 0 < t < π

2
1
J
In the case of lower interactions, Hub-

bard Dimer oscillations at frequency
√
U2 + 16J2 become

comparable to the frequency 2J and therefore we see that
already the first oscillation peaks are heavily damped.

In general, the two-site dynamics is well able to de-
scribe the creation of the particle, hole, and doublon
wavefronts seen in the density profiles. These wavefronts
are created during the two-site oscillations. Our numeri-
cal results and analytical investigations confirm the two-
fluid picture of the system. Initially, the interaction takes
place at the edges of the cloud, where unpaired parti-
cles are created according to the dimer dynamics de-
scribed above. The subsequent expansion is explained
by dynamics of non-interacting particles (at the speed of
2J) or doublons (at the speed of 4J2/U). Our model
gives an excellent quantitative description in the highly-
interacting limit due to the clear separation of the ex-
pansion and dimer oscillation eigenfrequencies. For in-
teractions 0.5 ≤ |U | ≤ 3.0 the interplay between the
expansion and the Hubbard dimer dynamics does not al-
low a quantitative description of the numerical results,
however it provides a qualitative framework for further
analysis. For |U | ≤ 0.5, the free-particle expansion seems
to give a fairly good description.

Finally, we compare our results to the 2D experiment
of [9] done at finite temperature. We suggest that our
two-site considerations also apply to the dynamics of the
experiment. In 2D there is coupling to four adjacent
sites, but just like in 1D, initially the sites are either Pauli
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FIG. 9: The core expansion speed Ṙ(t), as a function of the
interaction strength. For reference, we plot also the expansion
speed of the whole cloud.

blocked or empty. The simplified dynamics should orig-
inate from the two-site analysis, and subsequent short-
time dynamics in the high interaction limit correspond
to the two-fluid expansion, with the two fluids interact-
ing only at the edges.

In order to compare our results to Fig. 5 of [9] we
define the core density as nC

i ↑(t) = ni ↑(t) − nb
i ↑(t) for

|U | > 0.5 and nC
i ↑(t) = ni ↑(t) for |U | ≤ 0.5, where nb

i ↑(t)
is the density of purely ballistic particles (see supplemen-
tary material). The definition of the core then corre-
sponds to the diffusive part of the cloud in the model
of [9]. The core expansion velocity is given by Ṙ(t),

where R(t) =
√
< i2 > − < i >2, < i >=

∑L

i=1([n
C
i ↑(t)+

nC
i ↓(t)] ∗ i)/

∑L

i=1(n
C
i ↑(t) + nC

i ↓(t)) and L is the number
of lattice sites. The core expansion speed as a function
of interaction is plotted in Fig. 9. The behavior of Ṙ(t)
is indeed similar to the core expansion velocity in Fig. 5
of [9], showing also the negative velocities.

Another recent experiment [10] studied collision dy-
namics of two Fermi gas clouds. Although the experi-
ment is not done in a lattice, the theoretical framework
presented here can in the low density limit be used to
desribe also physics in [10], c.f. [19].

In conclusion, we studied the expansion of an interact-
ing fermionic gas in a 1D lattice. We showed that the
time evolution of this system can be described in terms
of a two-fluid model of unpaired particles and doublons
whose interplay gives rise to nontrivial dynamics. We
suggest that the experimental results of [9] can be in-
terpreted in terms of the analysis performed here. Our
results should be widely applicable since expansion is a
basic dynamics problem related to the ultracold gas ex-
periments in particular, and to the transport properties
of fermions in general.
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Note added: After submission of this work, a related

numerical study of 1D dynamics has appeared [20].
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nen, and P. Törmä, Phys. Rev. Lett. 103, 066404 (2009);
F. Heidrich-Meisner, et al., Phys. Rev. A 80, 041603
(2009); A. Yamamoto, M. Yamashita, and N. Kawakami,
J Phys Soc Jpn 78, 123002 (2009); M. Tezuka and
M. Ueda, New J Phys 12, 055029 (2010); A. Korolyuk,
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