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We calculate the momentum distribution n(k) of the Unitary Fermi Gas using Quantum Monte

Carlo at finite temperature T'/er as well as in the ground state.
find that n(k) falls off as C/k*, in agreement with the Tan relations.

At large momenta k/kp, we
From the asymptotics of

n(k), we determine the contact C' as a function of T'/er and present a comparison with theory.
At low T'/ep, we find that C increases with temperature, and we tentatively identify a maximum

around T'/ep
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The Unitary Fermi Gas (UFG) is one of the most in-
teresting strongly interacting systems known to date, as
it saturates the unitarity bound on the quantum me-
chanical scattering cross section o, < 4n/k?  Since
the proposal of the UFG as a model for dilute neutron
matter by Bertsch [1] and its realization in ultracold
atom experiments [2], the UFG has garnered widespread
attention across multiple disciplines, including atomic
physics [3], nuclear structure [4] and relativistic heavy-
ion collisions [5]. The UFG is defined as a two-component
many-fermion system in the limit of short interaction
range r, and large s-wave scattering length a,

0+ kpro <1< kpa — o0, (1)

with kp = (372n)!/3 the Fermi momentum and n the
particle number density. The special properties of the
UFG arise from the fact that it is characterized by a sin-
gle scale, given by the inter-particle distance ~ k;l, with-
out reference to the details of the interaction. While the
thermodynamic properties of the UFG are universal [6],
the lack of an obvious dimensionless expansion parameter
makes the UFG a challenging many-body problem.

In spite of the challenges of the unitary limit, much
progress has been made with purely analytical methods.
Notably, in 2005 Tan was able to derive exact thermody-
namic relations [7] in terms of a universal quantity known
as the “contact” C, which determines the number of pairs
separated by short distances. Since then, the Tan rela-
tions have been re-derived in multiple ways [8-10] as well
as verified experimentally [11-13].

Recently, C' has also been found to determine the pref-
actor of the high-frequency power-law decay of correla-
tors [14, 15], as well as the right-hand sides of the shear-
and bulk viscosity sum rules [15]. The contact is there-
fore a central piece of information on the UFG in equilib-
rium as well as away from equilibrium, since it constrains
several thermodynamic quantities with a single number.
On the experimental side, C' has been shown to be cen-

~ 0.4. Our calculations are performed on lattices of spatial extent up to N, = 14 with
a particle number per unit volume of ~ 0.03 — 0.07.

tral to radio-frequency spectroscopy and laser photoas-
sociation [16], as well as to govern the rate of decrease
of low-energy atoms due to inelastic two-body scattering
processes with a large energy release. The Tan relations
(as well as the above-mentioned sum rules) remain valid
at arbitrary kpa as long as kprg < 1. For further details
and a comprehensive review, see Ref. [16].

The calculation of C' itself, however, remains a chal-
lenge, as it depends on the intricate many-body dynamics
of the unitary regime. In principle, C' can be extracted
from any one of the Tan relations (as recently done in
experiments [12]). One of the simplest relations concerns
the asymptotics of the momentum distribution, and as-
serts that

C = lim k*n,(k),

Jim ng (k) = (f o), (2)
where n (k) is the momentum distribution expressed as
a thermal average, and the a al o and a, ;. denote creation
and annihilation operators for partlcles of momentum k
and spin o. If n_ (k) is normalized to the particle number
N,, then C is an extensive quantity with dimensions of
momentum. We shall consider C' in units of kj divided
by the total particle number N = N, + N, .

In this work, we focus on the momentum distribution
of the homogeneous UFG and the extraction of C via
Eq. (2), using a Quantum Monte Carlo (QMC) approach
which accounts fully for quantum and thermal fluctua-
tions. On a spatial lattice, the Hamiltonian that captures
the physics of the unitary limit can be written as

h2k?
= Z ( Ay, App + %k%k) - anM ny,  (3)

where m is the mass of the fermions (henceforth set to
unity), g is the bare coupling, and 7, denotes the num-
ber density operator for spin projection o at lattice posi-
tion 7. The equilibrium thermodynamical properties are



obtained from the grand canonical partition function
Z = Tr exp[-B(H—pN)], (4)

where 8 = 1/kgT, p is the chemical potential, and
N=Ny+Np=D i+ )iy, (5)

denotes the particle number operator.

In our QMC treatment, the system is placed on a
(34 1)-dimensional Euclidean space-time lattice via a
Suzuki-Trotter decomposition of the Boltzmann weight
in Eq. (4), and the interaction is represented via a
Hubbard-Stratonovich (HS) transformation [17]. As we
focus on the spin-symmetric case, the fermion sign prob-
lem is absent. The resulting path integral formulation
is an exact representation of the many-body problem of
Eq. (4), up to finite volume and discretization effects.
These may be addressed by varying the spatial lattice
volume V = N2 and the density n, such that the thermo-
dynamic and continuum limits are recovered as V' — oo
and n — 0. The latter requires great care, as too low den-
sities imply a departure from the thermodynamic limit.
We find that n ~ 0.03 — 0.05 particles per unit volume
yield results accurate to ~ 7% at finite temperature, and
to < 5% at T = 0.

Our lattice formulation is very similar to Ref. [18], but
differs in at least three notable aspects. Firstly, we deter-
mine the bare lattice coupling constant g corresponding
to the unitary regime by using Liischer’s formula [19] as
in Ref. [20]. This procedure yields g ~ 5.14 in the uni-
tary limit. Secondly, we use the compact, continuous HS
transformation

do; [1 4 Bsin(o;) fiy]

—T

.. 1

x [1+ Bsin(o;) fi};] , (6)

where o; (not to be confused with the spin projection) is
the HS auxiliary field, with B?/2 = exp(7g)—1, and 7 de-
notes the lattice spacing in the imaginary time direction.
We find that 7 ~ 0.05 is sufficiently small to render dis-
cretization errors from the Suzuki-Trotter decomposition
insignificant (see also Fig. 2). The above representation
(referred to as “Type 4”7 in Ref. [21]) was found to be su-
perior with respect to acceptance rate, decorrelation and
signal-to-noise properties than the more conventional un-
bounded and discrete forms [22]. Thirdly, we update the
auxiliary field o using the Hybrid Monte Carlo (HMC)
algorithm [23] (familiar from Lattice QCD), which com-
bines the Metropolis algorithm with deterministic Molec-
ular Dynamics. Our implementation of HMC enables
global updates at all temperatures and lattice sizes, and
scales approximately as ~ V2 as a function of the spatial
lattice volume, to be contrasted with the ~ V3 scaling of
approaches based on local updates.
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FIG. 1: (Color online) Momentum distribution n(k) from
QMC for N, = 10 as a function of k/kp, for various tem-
peratures ranging from zero to T'/er ~ 0.5. The curves are
intended as a guide to the eye, and the statistical errors are
the size of the symbols. Inset: n(k) for N, = 14 in a log-log
scale, showing the asymptotic ~ k~* behavior.

We have performed calculations at T = 0 as well as
T/er > 0, in the former case using an approach similar
to Ref. [21]. Our main results correspond to 40 — 50 par-
ticles at N, = 10 and 70 — 80 particles at N, = 12, in
addition to limited data for IV, = 14. In Fig. 1, we show
the momentum distribution n(k) as a function of T'/ep.
We have computed n(k) by averaging over the angular
directions on the lattice as well as over the imaginary-
time slices. In this way, we find that ~ 200 uncorrelated
auxiliary field samples for each datapoint gives excellent
statistics for n(k). Multiplying n(k) by k%, as plotted
in Fig. 2, we find a peak at £ ~ k; and a leveling out
at high momenta, with the asymptotic regime setting in
at k ~ 2k at the lowest temperatures. It is fortuitious
that the asymptotic regime sets in at such low momenta,
as there is no obvious reason for this to be the case. It
is then possible to study the temperature dependence of
this “plateau”, which allows for a determination of the
contact C'/(Nky) as a function of T/ep. These results
are given in Fig. 3, together with a comparison with avail-
able theoretical analyses. Our results indicate that n(k)
follows the expected ~ k% dependence very accurately
up to at least k ~ 4k, at which point the signal deteri-
orates due to lattice artifacts.

The value of C' in the ground state can be com-
puted via Diffusion Monte Carlo (DMC), as first done
in Ref. [24] using density-density correlations, which
yielded C(T' =0)/(Nkp) ~ 3.4, up to errors associated
with fixing the nodes of the wavefunction. A more re-
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FIG. 2: (Color online) Plot of 37%(k/kp)*n(k) for N, = 12
as a function of k/kp at T/er = 0.178 and 0.404. The
“plateaux” at large k/kp give the (intensive) dimensionless
quantity C/(Nkg). At low T'/ep, the asymptotic region is
reached at k/kp ~ 2. Inset: N, = 10 results at 7' = 0 show-
ing only slight dependence on the Suzuki-Trotter step 7.

cent and comprehensive DMC calculation [25] came to
the same conclusion using the equation of state, the
momentum distribution and the density-density corre-
lation. In contrast, our present results indicate that
C(T =0)/(Nkp) ~2.95+0.10. The cause of this dis-
agreement is being explored. The main sources of uncer-
tainty in our determination of C/(Nkg) are due to finite
density effects. While we find that such effects tend to
overestimate C'/(Nky) as well as degrade the formation
of an asymptotic ~ k=% tail in n(k) at larger values of
T/ep, larger lattices are needed in order to maintain the
thermodynamic limit at lower densities.

The temperature dependence of C' at unitarity was
first determined analytically in Ref. [26], who consid-
ered two different limits. At very low temperatures
T <« T, ~ 0.15€p, the dominant excitations are of
phononic origin, and the T-dependence of C'is of the form
C/(Nky)  (T/er)*. On the other hand, at very high
temperatures T >> e, one finds C/(Nkp)~16/3 (e/T)
within the second-order virial expansion. An interpo-
lation between these limits then suggests that C(T'/ey)
should present a maximum for 7'~ €. Recently, C' has
also been computed using two different types of t-matrix
approximations [27, 28], as well as a third-order virial
expansion [29]. The latter has shown evidence for con-
vergence of the virial expansion down to T" ~ €. In light
of these findings and upon analysis of various model cal-
culations at low T, Ref. [29] conjectured that the contact
is likely a monotonically decreasing function of T, except
possibly in the phononic regime at very low 7. While
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FIG. 3: (Color online) Summary of QMC results for C/(Nkg)
as a function of T'/ep, as determined from the large k/kp be-
havior of n(k). The errorbars are dominated by systematics
related to the residual fluctuations in the plateaux, as exhib-
ited in Fig. 2. Also shown are the t-matrix calculations of
Refs. [27, 28] and the virial expansion of Ref. [29].

the virial expansion is on solid ground at high 7', where
it agrees with the ¢-matrix approaches of Refs. [27, 28],
the actual T-dependence in the strongly correlated low-T'
regime has remained an open question, particularly since
the UFG is strongly correlated even above T, [30].

Our results show that C grows with 7' well beyond
the superfluid phase, and are suggestive of a maximum
Chax =~ 3.4 at T'/ep ~ 0.4. This scenario is in quali-
tative agreement with Ref. [26], as well as the t-matrix
calculation of Ref. [27]. As C measures the number of
particle pairs (of both spins) whose separation is small,
the appearance of a maximum indicates an enhancement
in such short-range correlations. This may be a result
of local pairing order [27], which in turn suggests that
Chax 1s directly related to pairing above T, i.e. to a
pseudogap. We find the scale at which the k% law sets
in (see Fig. 2) to be k ~ 2k at finite T/ and somewhat
lower for the ground state, in agreement with Ref. [12].
This universal property of the unitary limit character-
izes the “healing distance” of the two-particle boundary
condition on the many-body wavefunction, and therefore
separates the microscopic properties from the universal
macroscopic aspects of the unitary regime. Direct com-
parison of our data with ultracold atom experiments can
be achieved by means of the virial expansion and the Lo-
cal Density Approximation (LDA). While we defer this
issue to a follow-up paper, we note that in light of the
work of Ref. [32], the features of C'(T'/er) found in this
study are unlikely to conflict with current experiments.

In summary, we have computed the momentum dis-



tribution n(k) and the contact C'/(Nky) for the UFG
at zero and finite T'/ep, using the auxiliary field QMC
method in conjunction with the HMC algorithm. While
the ground-state momentum distribution was first deter-
mined via DMC in Ref. [31], our results represent the
first fully non-perturbative calculation of n(k) free of un-
controlled approximations. We find that the contact at
T = 0 assumes the value ~ 2.95 + 0.10 and increases as
a function of T'/e in the low- and intermediate temper-
ature regimes that we have explored, which is consistent
with the phononic scenario. Notably, DMC calculations
find a somewhat larger value of C/(Nkg) ~ 3.4, while
the analytic approach of Ref. [33], which interpolates
smoothly between the strong- and weak-coupling limits,
yields C/(Nkp) ~ 3.0 which is consistent with our data.
Our results complement the calculations of Refs. [26—
29], and are suggestive of a maximum in C/(Nkg) at
T/ep ~ 0.4, which agrees qualitatively with Ref. [27] but
disagrees with Ref. [28]. While calculations at higher
T/ep ~ 1 are feasible, an improved understanding of the
finite density effects is clearly called for.
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