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We report a phenomenon that an optical beam transmits in a negative direction when passing
through a single array of high refractive index dielectric nanorods. The mechanism of the negative
directional transmission is believed to be due to the symmetry of resonant modes in the dielectric
nanoparticles. It is expected to find applications in designing compact optical components to achieve
the on-chip beam steering in photonic circuits.
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Resonance, in particular, subwavelength resonance
where resonant wavelength is much larger than the size
of resonator, plays an important role in many fields of
physics. Subwavelength resonant units have indeed be-
come the basic building blocks in artificially structured
electromagnetic (EM) materials. Particles with differ-
ent resonant properties assume different functions in ma-
nipulating EM waves. For instance, the localized sur-
face plasmon resonance of noble metal particles enables
guiding of the EM energy below the diffraction limit [1].
The magnetic resonance of split ring provides an effective
negative magnetic permeability [2], which, when com-
bined with metallic rods, leads to the implementation
of the negative refractive index materials [3]. The sub-
wavelength resonant units in metamaterials also offer an
approach to achieve seemingly arbitrary effective permit-
tivity and permeability, leading to many interesting phe-
nomena, which, among others, include invisibility cloak-
ing [4], optical illusion [5], and the photonic analogue of
the black hole [6]. By carefully tuning the resonances
in multiple angular momentum channels (AMCs) [7] of
nanoparticles to a nearly degenerate frequency, one is
able to beat the single channel limit of total scattering
cross section, giving rise to a superscattering effect [8].

While most subwavelength resonators were based upon
metallic components taking advantage of the plasmonic
resonance, dielectric particles with high electric permit-
tivity (high-ε) also show unique property of supporting
subwavelength resonance in the lower AMCs. Therefore,
they offer an alternative way to produce the negative re-
fraction behavior [9] and transfer EM energy below the
diffraction limit [10], with the potential for operation
at near optical frequencies with lower absorption loss in
comparison with their metallic counterpart.

Up to now, much effort concerning the subwavelength
resonance in the EM community has been devoted to pro-
ducing the desired permittivity and permeability, while
the symmetry nature of the resonance in different AMCs,
together with its physical consequence in manipulating

FIG. 1: (Color online) The H field distribution at the res-
onance in the 0th (a) and 1st (b) AMCs, corresponding to
λ = 2362 nm and 1550 nm, respectively, for a single Si
nanorod of radius rs = 255 nm. The black arrows display
the direction of the E field on the mesh points at regular in-
tervals outside the rod. Distribution of H field intensity when
a Gaussian beam strikes a single-layer array in the y direction
composed of 15 Si nanorods at frequencies corresponding to
the resonance in the 0th (c) and 1st (d) AMCs. The arrows
in (c) display the direction of four different Bragg diffracted
orders.

EM waves, remains far less explored. The only two exam-
ples we are aware of are the observation of a finite circula-
tion in the reflected beam [11] and the unidirectional EM
edge states [12] because of the broken time reversal sym-
metry of the scatterer in a magnetic field. In this Letter,
we report another interesting phenomenon in which the
incident beam can be manipulated with the symmetry of
resonant modes inside high-ε dielectric nanoparticles. As
a result, when an optical beam strikes on an array of high-
ε dielectric nanorods, the outgoing beam can propagate
in a “negative” direction as shown in Fig. 1(d), namely,
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the outgoing (transmitted) beam makes a sharp turn and
lies on the same side of the normal as the incident beam.
Unlike another interesting phenomenon of negative re-
fraction [3], which guides the refracted beam to travel in
a negative way in another effective material, the nega-
tive directional transmitted beam studied here lies in the
same medium as the incident beam after passing through
a single array of nanoparticles. Therefore, it may serve
as optical component for beam steering in the chip-to-
chip interconnect systems and on-chip architecture. It is
noted that one way to steer light by a magnetic field was
proposed based on photonic hall effect [13]. Recently, a
series of important progress has been made toward the
on-chip beam steering, including the use of the photonic
crystal [14], nano Yagi-Uda antenna [15] and flat dielec-
tric gratings [16]. Due to the ultra-compact characteris-
tic and the extremely low absorption loss feature in the
dielectric system, our structure may provide yet an al-
ternative approach to gain high degree of on-chip control
over the flow of optical beams for optical circuit.

Let us start by studying the properties of resonant
states in the lowest two AMCs for a single particle. For
simplicity, we consider the two-dimensional case where
the field is uniform in the z direction and the H field is
polarized along z. Take silicon as an example of high-ε di-
electric. In the optical frequency region we are interested
in, the real part of its permittivity is 12.0 and the imagi-
nary part negligible [17]. Figs. 1(a) and (b) show that the
magnetic (H) field pattern exhibits the isotropic symme-
try at resonance in the 0th AMC, corresponding to inci-
dent wavelength λ = 2362 nm, and the dipole symmetry
at resonance in the 1st AMC corresponding to λ = 1550
nm, for a single nanorod with radius rs = 255 nm.

When the particles are arrayed in a line, the symmetry
of the resonant modes of different AMCs in individual
particles determines the direction of the outgoing beams.
At a wavelength λ = 2362 nm, corresponding to the 0th
order AMC resonance, Fig. 1(c) shows that there appear
four outgoing Bragg beams, in concert with the isotropic
symmetry of resonant mode in the 0th AMC. For the
1st AMC resonance at a wavelength 1550 nm, the dipole
symmetry completely suppresses the conventional (0th
order) transmitted and reflected Bragg beams, leaving
us with only one transmitted beam propagating in the
“negative” direction, as shown in Fig. 1(d). Here the
separation between adjacent rods is a0 = λ/

√
2. Such an

array functions as a grating which only supports the 0th
and −1st diffraction orders when the angle of incidence
is θi = 45◦ [18]. The higher order reflection is usually
enhanced by blazed gratings. Recently, some efforts have
been made to enhance the −1st order transmission for
soft X-ray band using the total external reflection [19].
We demonstrate here that the symmetry at the 1st AMC
resonance offers another way to achieve the −1st order
transmission of the beam, while drastically suppress the
zeroth order reflected and transmitted waves, with the
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FIG. 2: (Color online) (a) The scattered H field intensity of
an isolated rod at the 1st AMC resonance. (b) The time-
averaged Poynting vector inside a rod located in the array,
showing a vortex of energy flow and implying a rotating dipole
excited in the rod. (c) The longitudinal mode and transverse
mode, with the excited dipole aligned along and normal to
the linear array, respectively. (d) The scattered H field inten-
sity from one rod located in the array. (e) The scattered H
field intensity from a pair of adjacent rods in the array. The
presence of many rods in (d) and (e) implies the inter-rod
coupling is considered compared to the case in (a).

structure much thinner than the operational wavelength.

We next illustrate the relation between the negative
transmission and the dipole resonant symmetry. At the
resonance in the 1st AMC, the scattered field exhibits the
dipole radiation symmetry, as shown in Fig. 2(a) for a sin-
gle rod. Due to this symmetry and the coupling between
dipolar resonance of individual rods, the array made up
of the nanorods supports two different modes: the trans-
verse (T) mode, with dipole moments oriented perpen-
dicular to the chain axis, and the longitudinal (L) mode,
with dipole moments aligned with the chain axis [20, 21].
The incident field excites both the L and the T modes
but with a finite phase difference, resulting in a rotating
dipole moment on each rod, which manifests itself by a
finite vortex of energy flow, as shown in Fig. 2(b). The
excited dipole on each rod in the array radiates in a strik-
ingly different way from a dipole excited in an isolated
rod, namely, the scattered field on the illumination side is
substantially attenuated, as can be seen by a comparison
between Figs. 2(a) and (d). This explains the vanish-
ing of the conventional (zeroth order) reflected waves. In
addition, as the incident wavelength λ =

√
2a0 and inci-

dent angle θi = π/4, the induced dipole moments in ad-
jacent rods have a phase difference of π, as schematically
shown in Fig. 2(c). As a result, the scattered fields on the
transmission side from a pair of adjacent rods interfere
to produce radiation mainly in 0th and −1st order trans-
mitted directions as shown in Fig. 2(e). While the scat-
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tered field in the 0th order transmitted direction cancels
out the incident field, the scattered field in the −1st or-
der transmitted direction is left as the propagating beam
in “negative” direction, as displayed in Fig. 1(d). It is
thus concluded that the phenomenon originates from the
dipole symmetry of the 1st AMC resonance of the sub-
wavelength high-ε particles.
Now we proceed to a rigorous calculation of the

transmissivity and reflectivity by multiple scattering
theory. The nanorods are arrayed in the y direc-
tion with the l-th rods located at Rl = la0êy. The
incoming and scattered H fields of rod l are ex-

panded as H
(l)
i =

∑

n i
np

(l)
n Jn(kbrl)e

inφl and H
(l)
s =

∑

n i
na

(l)
n H

(1)
n (kbrl)e

inφl , where rl = r − Rl =

rl(êx cosφl + êy sinφl), p
(l)
n = e−inθieikb·Rl , Jn and H

(1)
n

are, respectively, the nth order Bessel function and Han-
kel function of the first kind, and kb is the wave vector of
the incident plane wave. The nth term in the summation
denotes the nth AMC. The Mie scattering coefficient αn

can be writen as [7] αn = −1/(1+ i cotηn) with ηn being
the scattering phase shift of the nth AMC. The peaks of
| tan ηn| versus frequency, as shown in Fig. 3(a) for a rod
with rs = 255 nm, correspond to the Mie resonance of a
single rod in different AMCs [7].

By Floquet’s theorem, a
(l)
n = a

(0)
n eikyla0 with ky =

kb sin θi. A linear set of equations can be obtained and

solved for a
(0)
n . The reflected field is then given in terms

of diffracted waves of different orders ν as

Hr(r) =
∑

ν

rνe
i(kνy−βνx), (1)

with

rν =
2

a0

1

βν

+∞
∑

n=−∞

ina
(0)
n (kν − iβν)

n

knb
. (2)

Here βν =
√

k2b − k2ν for k2b ≥ k2ν and βν = i
√

k2ν − k2b for
k2b < k2ν , with kν = ky + gν and gν = 2νπ/a0. Similarly,
one has the transmitted field,

Ht(r) =
∑

ν

tνe
i(kνy+βνx) (3)

with tν = t′ν + δν0, and

t′ν =
2

a0

1

βν

+∞
∑

n=−∞

ina
(0)
n (kν + iβν)

n

knb
. (4)

Eqs. (1) and (3) show that only the 0th and −1st
diffracted waves are propagating for the case with λ/a0 =√
2 and θi = 45◦. The reflectivity Rν = |rν |2 and trans-

missivity Tν = |tν |2 versus frequency for ν = 0 and −1
are shown in Fig. 3(b). The effect of the resonant sym-
metry on the beam steering is observed by a comparison
between Figs. 3(a) and (b). As the incident frequency

0

50

100

1.0 1.5 2.0
0.0

0.5

1.0

0 20 40 60 80
0.0

0.5

1.0

 

|ta
n

n| 0th AMC 1st AMC (a)

(b)

 

 

R
, T

Frequency ( 1014 Hz)

  T0

 
 

 T-1

  R0 

  R-1

(c)

 

 

R
, T

Incident  Angle i (deg.)

FIG. 3: (Color online) (a) | tan ηn| versus frequency for a sin-
gle Si rod with radius rs = 255 nm. The peaks denote the 0th
and 1st AMC resonances. (b) Reflectivity and transmissivity
versus frequency for a linear array of rods, with a0 = λ/

√
2

and the incident angle θi = 45◦. (c) Reflectivity and trans-
missivity versus θi for a linear array of rods with a0=λ/

√
2

and λ = 1550 nm, corresponding to the 1st AMC resonance.

approaches the resonance in the 0th AMC, the diffracted
waves in the four directions tend to have nearly the same
amplitude, due to the isotropic symmetry of the reso-
nance. As the frequency goes close to the 1st AMC res-
onance with the dipole symmetry, our calculation shows
that t′0 ≈ −1, implying that the scattered wave will can-
cel out the incident wave due to the destructive interfer-
ence, and thus the 0th order transmitted wave vanishes.
In addition, since the radiation from the rod in the ar-
ray on the illumination side is dramatically attenuated,
especially in the 0th order reflected direction, as shown
in Fig. 2, one has R0 ≈ 0 and the zeroth order reflected
wave is also suppressed. The rigorous calculation corrob-
orates our analysis about the scattering properties of the
rod in the array shown in Fig. 2.
The angle resolved transmissivity (reflectivity) spectra

is shown in Fig. 3(c) at frequency of the resonance in
the 1st AMC. It shows that −1st order beam will be
the only transmitted beam for a wide range of incident
angle starting from 30◦ to 60◦ for the given structure with
a0 = λ/

√
2 and λ = 1550 nm, providing an acceptable

angular tolerance for the beam steering.

In Fig. 4, we further show a scheme to simultaneously
enhance the frequency bandwidth and the transmissivity
for the negative transmission. This is done by introduc-
ing another nanorod with smaller radius in each unit cell,
as shown in the inset of Fig. 4(a), where the smaller rod
has radius r′s = 0.4rs and is placed in touch with the
larger rod in each unit cell. Two touching rods form
a doublet. Near the 1st AMC resonance of the larger
rod, there appear two resonances, one from the larger
rod itself, the other from the doublet structure. The oc-
currence of two resonant peaks are shown in Fig. 4(b),
where the total scattering cross sections (TSCS) σsca/πrs
versus frequency for a single rod and the doublet struc-
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FIG. 4: (Color online) (a) The transmissivity T−1 of the −1st
order transmitted wave for the arrays made up of singlets
(black dashed line) and doublets (red dashed line). The inset
shows the unit cell of the singlet and doublet. Both lattice
separations are a0 = 1096 nm for the singlet and doublet
structures for which the beam steering can be realized near the
wavelength λ = 1550 nm. (b) Total scattering cross section
(dashed lines) and collective resonance spectrum [10] (solid
lines) for singlet (black) and doublet (red) structures.

ture are plotted. An enhancement of resonant bandwidth
is obvious, which leads to the broadening of bandwidth
for the negative transmission and thus beam steering.
Another advantage of using doublet structure is that it
simultaneously enhances the transmission. The −1st or-
der transmissivity can reach 0.9, in comparison with 0.8
for array made up of single rod, as shown in Fig. 4(a).

Finally, the underlying physics for the negative trans-
mission phenomenon suggests that it is neither limited
to circular cross section of rod, nor is it limited to two-
dimensional case. In Fig. 5(a), we present the field dis-
tribution near an array consisting of infinite nanorods
of square cross section at the 1st AMC resonance. The
length of side of the square is 462 nm. The calculation
shows the array enables the same manipulation of beams
using COMSOL Multiphysics. As an example of three
dimensions, in Fig. 5(b) we show the H field intensity
pattern for an array composed of 4µm-high rods of ra-
dius 255 nm. The calculation is carried out with the
finite-difference time-domain method. The sharp turn of
optical beams by the single-layer array is again demon-
strated near the dipolar resonance of individual particles.

In summary, we have shown that the beam steering is
possible using a single-layer array composed of high-ε di-
electric nanorods based on the 1st AMC resonance. With
the capability to operate in optical frequency at low loss,
the phenomenon is expected to find applications in de-
signing compact optical components in photonic circuits.
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FIG. 5: (Color online) Distribution of the H field intensity
when a linear array composed of (a) square rods of side length
462 nm and (b) 4 µm-high circular rods with radius 255 nm,
is illuminated by a Gaussian beam, demonstrating the beam
steering using a single array of rods with non-circular cross
section and three dimensional particles. The incident wave-
length is λ = 1550 nm for both cases.
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