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3Département de Physique Théorique, University of Geneva, CH-1211 Geneva, Switzerland

We analyze the effect of a linear time-variation of the interaction strength on a trapped one-dimensional Bose
gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible
onsite particle distribution are studied as a function of the ramp time using time-dependent exact diagonalization
and density-matrix renormalization group techniques. We find that the dynamics of a trapped system typically
display two regimes: for long ramp times, the dynamics are governed by density redistribution, while at short
ramp times, local dynamics dominate as the evolution is identical to that of an homogeneous system. In the
homogeneous limit, we also discuss the non-trivial scalingof the energy absorbed with the ramp time.
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Manipulating many-body quantum systems by time-
varying their control parameters is a practical challenge of
technological importance in many areas of physics including
condensed matter, quantum information, and cold atomic and
molecular gases. However, our understanding of the quantum
dynamics of many-particle systems and the identification of
their universal dynamical features is still in its infancy [1, 2].
In recent years, it was suggested that the Kibble-Zurek mecha-
nism [3], originally developed to describe the evolution ofthe
early universe, could explain the dynamics of systems across
quantum phase transitions. Despite a few successes, the va-
lidity of this theory to describe the evolution of all quantum
systems is still not accepted. Unbiased theoretical methods,
going beyond scaling arguments, are required to understand
the dynamics of both homogeneous and inhomogeneous non-
integrable quantum systems. In an attempt to shed some light
on the evolution of bosonic systems subjected to a change of
their control parameters, experiments on4He [4] and more
recently on cold atoms were reported. Quenches, conducted
on a trapped bosonic quantum gas loaded into an optical lat-
tice, were performed by changing the depth of the lattice over
a given time interval [5–8]. In these experiments, the out-
of-equilibrium processes were investigated by considering the
behavior of local observables such as the density, compress-
ibility and onsite particle distribution. For slow to moderate
quenches, two different evolution regimes which depend on
the ramp time and on the initial interaction strength were ob-
served. These two regimes are believed to be related to the
local and global dynamics of the system [6, 8, 9]. How well
these experiments can be used to clarify the universal dynam-
ics of homogeneous systems has not been addressed yet.

In this work, we provide answers to this question by analyz-
ing the response of bosons stored in a one-dimensional (1D)
lattice to a slow increase of their interaction strength using the
unbiased methods of exact diagonalization (ED) and density-
matrix renormalization group (DMRG). In the homogeneous
case, we find, in addition to the sudden quench and quasi-
adiabatic behaviors observed for fast and slow ramp times re-
spectively, that at intermediate ramp times the absorbed en-
ergy scales non-trivially with the ramp duration. In the pres-

ence of a trap, we identify two distinct regimes as a functionof
the ramp time. For long ramp times, the evolution is governed
by density redistribution, whereas for shorter ramp times,the
evolution is dominated by intrinsic local dynamics and mass
transport is absent. This last response is the same as that ofan
homogeneous system.

We carry out our study using the 1D Bose-Hubbard model:

H = −J
∑

j

[b†j+1bj+h.c.]+
U(t)

2

∑

j

nj(nj−1)−
∑

j

µjnj ,

with b†j the operator creating a boson at sitej, nj = b†jbj
the density operator andJ andU the hopping and interaction
amplitudes. The chemical potentialsµj account for an exter-
nal confinement. At commensurate fillings, a quantum phase
transition from a gapless superfluid (SF) to a gapped Mott in-
sulating (MI) state occurs (atU ≈ 3.3J for n = 1 [10]).
The slow quench is performed by increasing the interaction
strength linearly, i.e.U(t) = Ui +

t
τ δU with τ the ramp

time, δU = Uf − Ui the quench amplitude, andUi(f) the
initial (final) interaction. This can be achieved experimen-
tally using a suitable Feshbach resonance [11]. Aspects of
linear quenches have been discussed previously using various
approximate methods [1, 2, 12]. Here, time evolution is com-
puted numerically on chains of sizeL, using both ED with pe-
riodic boundary conditions and an onsite boson cutoffM ≥ 7,
and DMRG [13] with open boundary conditions andM = 6.
The convergence of the DMRG results both with the num-
ber of states (a few hundreds) of the reduced space and the
time-step of the Trotter-Suzuki time-evolution were checked.
Denoting byE0,i/f the initial and final ground-state energies
andEf the energy obtained at timeτ , we introduce the heat
as the energy absorbed by the system:Q = Ef − E0,f . Note
that we only consider the time-evolution during the ramp and
not the relaxation once the ramp is completed. Further, the
derivative of the chosen ramp has a discontinuity at the initial
time, by which higher modes might be excited.

Homogeneous system– We first aim here at understanding
the intrinsic evolution of local observables by studying the ho-
mogeneous limit as many features identified in such systems
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FIG. 1. (Color online)Ui = 2J andUf = 3J atn = 1. (a) Scaling
of the heat put into the homogeneous system vs inverse ramp timeτ
showing a non-trivial exponent in the near-adiabatic regime. Inset :
collapse of data for differentδU (ED). (b) Comparison to perturba-
tion theory (τc ≃ 3.47~/J). Inset: Spectral function associated with
perturbation theory forU = 2J (ED).

are also relevant to the trapped case. In Fig. 1(a), we show
the heat produced by the quench for a givenδU as a function
of the inverse ramp timeτ−1. In finite-size systems, three
regimes are typically observed: at large-τ (adiabatic limit),
Q ∼ τ−2 with oscillations [1], here associated with a finite-
size gap [14]; at intermediateτ , we find a non-trivial power-
law behavior; finally, for shortτ , Q approaches the sudden
quench limit [15] quadratically.

These results can be compared with time-dependent pertur-
bation theory in theinitial Hamiltonian basis{|n〉} where the
“ramp velocity”v = δU/τ is the small parameter. To second
order inv, the energy variation reads:

∆E(t) = vtB0 − v2
∑

n6=0

|Bn|
2

ω3
n

[

(ωnt)
2 − 4 sin2

(

ωnt

2

)]

with B̂ =
∑

j nj(nj − 1)/2 the perturbation operator and

Bn = 〈n|B̂|0〉. Numerically, we access the|Bn|
2 and ener-

giesωn = En −E0 in the low-energy regime using the Lanc-
zos algorithm. Considering only the final timeτ and introduc-
ing the energy spectral function,B(ω) =

∑

n |Bn|
2δ(ω−ωn),

one gets for the heat

Q(τ, δU) = Q0(δU) (1)

−
δU2

τ2

∫ ∞

0+
dω

B(ω)

ω3

[

(ωτ)2− 4 sin2
(ωτ

2

)]

,

whereQ0(δU) = δUB0 + E0,i − E0,f is theexactsudden
quench expectation. Counter-intuitively, even though this re-
sult is perturbative inv, it yields the correct result in the large
velocity v limit as the ramp timeτ becomes short enough in
this regime. Thus, this perturbation theory provides short-τ
corrections away from the sudden quench limit, which can be
calculated using ground-state observables. Indeed, assuming
thatB(ω) has a support with an upper bound or decays expo-
nentially, ones finds thatQ(τ, δU) = Q0(δU)−L δU2

J (τ/τc)
2

with the characteristic ramp timeτc given by

τ−2
c =

J

12L

∫ ∞

0

dω ωB(ω) =
J2

12L
〈0|B[B,K]|0〉

whereK is the kinetic term
∑

j [b
†
j+1bj + h.c.]. The magni-

tude ofτc is consequently directly connected to the equilib-
rium three-point correlatorB[B,K]. The scaling ofτc with
L depends on the typical behavior of the correlator with dis-
tance. If the latter is exponentially decaying with a correlation
lengthξ, we haveτc ∼ 1/Jξ which remains finite in the ther-
modynamic limit. With an algebraically decaying correlator,
τ−1
c could diverge withL if the decay is too slow. In our

model, we find with negligible finite-size effects thatτc is an
increasing function ofUi, indicating that the correlator drops
off rapidly for anyU . Using Eq. (1), one obtains a quantita-
tive agreement up to intermediate velocities and close to the
power-law regime (see Fig. 1(b)). Furthermore, the details
of B(ω) do not alter much this short-τ regime as a truncated
triangular approximation ofB(ω) (“model” in Fig. 1(b)) re-
produces well this regime.

We observe that the accuracy of Eq. (1) improves with de-
creasingδU . In the smallδU limit, the quench essentially
becomes a probe of the initial ground-state dynamics. To sec-
ond order inδU , the maximum heat behaves asQ0(δU) ≃
δU2

∑

n>0 |Bn|
2/ωn. Combining this result with Eq. (1), we

find thatQ(τ, δU)/Q0(δU) ≃ f(τ) is a function ofτ only.
In the Inset of Fig. 1(a), we see that curves do collapse well
onto each other forδU ≤ 0.6; while they do not for larger
δU as in this case heat production depends on bothτ andδU .
Remarkably, the smallδU limit also provides information on
the large-τ (adiabatic) regimes as, in that case, the first part
of the integral in Eq. (1) cancels withQ0(δU). There, we
recover the results of Ref. 17. In particular, we see that for
a gapped spectrum Eq. (1) reproduces the typicalτ−2 decay
combined with some oscillating terms. Lastly, we discuss the
exponentη ≈ 1.35 observed forUi = 2J andδU = J . For
large system sizes, this behavior is found above the sudden
quench limit but below a ramp time set by the inverse finite-
size gap [18]. We cannot relate this exponent to various pre-
dictions on approximated versions of the model [1], nor to
the above perturbative approach. Similar non-universal be-
haviors were recently reported in Ref. 18. Moreover, the Inset
of Fig. 1(a) shows that this exponent depends onδU . This may
have different reasons. Firstly, contributions of intermediate
interaction values at which the system possibly possesses dif-
ferent low-energy physics might play a role. Secondly, a dis-
continuity in the derivative of the considered ramp form might
cause higher energy excitations. Lastly, energy redistribution
between excited states, which we found to be negligible only
for small quenches, could also play a role. This exemplifies
that, typically, only the smallδU limit can display universal-
ity.

Following experiments, we turn to the discussion of local
observables.κj = 〈n2

j〉 − 〈nj〉
2 denotes the compressibility

at sitej whilePn is the probability of havingn bosons onsite.
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FIG. 2. (Color online) Observables for a quench fromUi = 2J to
Uf = 4J (ED) (a) Occupation probabilityPn and compressibilityκ
vs ramp timeτ in the homogeneous system.(b) Perturbation theory
of Eq. (2) gives a quantitative prediction forL = 11. TheL = 16
data gives an idea of finite-size effects.

The evolution of Fig. 2(a) starting from the SF phase typically
displays the same three regimes as for the heat, with finite-
size oscillations close to the adiabatic limit. Entering the MI
atn = 1, P1 increases withU while otherPn concomitantly
decrease. The perturbative prediction for a real symmetricob-
servableA reads, at timeτ and to first order inv,

A(τ, δU) = A0 − 2
δU

τ

∑

n6=0

ωnτ − sin(ωnτ)

ω2
n

AnBn . (2)

Here again, it is remarkable that the simple perturbation the-
ory provides a quantitatively good (up to a percent in this case)
prediction of the exact time-evolution (see Fig. 2(b)).

Trapped system– In current cold atom experiments, an ex-
ternal parabolic trap is usually present, i.e.µj = −V (j −
L+1
2 )2. As the density increases from the edges to the center,

for largeU , MI domains coexist with SF regions [19]. Thanks
to recent advances, measurements with single-site resolution
are now possible in 2D cold atoms lattice setups [7, 8], en-
abling one to focus on a particular domain. However, in an
out-of-equilibrium situation, density gradients and parameter
changes induce flows of particles. Consequently, the density
redistribution will have an impact on locally measured quan-
tities. These transport phenomena occur on timescales that
depend on the velocity of excitations (typically controlled by
J) and the domain sizes.

Generally, the timescales for density redistribution are
longer than the intrinsic dynamics of a local observable. We
show in this section that, in the fast quench regime, an in-
trinsic evolution of the observables occurs while the density
redistribution remains frozen. On the contrary, this redistri-
bution dominates in the slow ramp regime. To demonstrate
this point, we systematically compare the evolution of observ-
ables in the trapped cloud with its homogeneous counterpart
(choosing the same initial density in the center). We consider
the evolution of a trapped cloud whose majority of atoms are
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FIG. 3. (Color online). Comparing local observables at the center
of the system between homogeneous and trapped configurations as
a function of the ramp timeτ (DMRG calculations). The grey area
shows the timescales over which the responses are identical. (a) slow
change fromUi = 2J toUf = 4J . (b) Ui = 4J toUf = 6J .

initially in a SF state as the system features no or only weak
MI regions signaled by a trough in the compressibility. Fig.3
displays comparisons between observables taken at the cen-
tral site as a function of the ramp time, and for two different
interaction quenches: (a)U = (2 → 4)J , (b)U = (4 → 6)J .

For case (a) of Fig. 3, we see that for short ramp times the
central density does not rearrange. In fact, the density remains
constant for all ramp times shorter thanτ ≈ ~/J . Meanwhile,
the compressibilityκ and probabilitiesP1/2 show well pro-
nounced variations. Remarkably, for this range ofτ , we find
all observables to be in excellent agreement with the homo-
geneous system predictions. This result supports our previ-
ous statement that intrinsic local dynamics dominate at short
ramp times. For longer ramp timesτ > 2~/J , we find a
clear change in the central density, associated with the onset of
particle currents [20]. Naturally, this reduction of the density
modifies the particle distribution and compressibility, driving
them away from the constant density behavior and close to the
adiabatic expectation for the trapped cloud (with slight oscil-
lations). On Fig. 4(a), we show the actual time evolution of
the density and compressibility corresponding to a ramp time
τ = 20~/J . The density configuration remains almost frozen
up to timet = 5~/J even though the corresponding ground
state considerably differs, and begins to evolve afterward. At
later times, the density profile broadens reaching a wider size
than the one expected for the ground state at the correspond-
ing U/J . At the end of the evolution process, the system is
therefore in an excited state. In comparison, the compress-
ibility distribution evolves much faster than the density.At
each time step, the compressibility is relatively close to its
corresponding ground state value. The difference between the
time-evolved and ground-state values are most likely due to
the unrelaxed density profile. Consequently, this direct time-
analysis of a slow quench reinforces our previous conclusion
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that the intrinsic evolution of the observables and the density
redistribution are characterized by two different timescales.

For case (b) of Fig. 3, the first striking feature is the even
slower evolution of the central density with increasing ramp
times when compared to the situation discussed before. Up to
τ ≈ 2~/J , the density remains very close to its initial value
and the other local observables are identical to their corre-
sponding homogeneous value. For longer ramp times, the cen-
tral density then shows an oscillatory decrease and the other
observables deviate from their constant density counterparts.
However, even for the longest ramp times considered, the den-
sity has still not reached the adiabatic regime. The slowdown
of the density rearrangement is attributed to the emergenceof
Mott “barriers” in regions wherenj ≈ 1. This effect is un-
derlined in the snapshots of Fig. 4(b). These “barriers” arise
due to the rapid reduction of particle fluctuations at largeU
and the local reduction of transport. On Fig. 4(b), we ob-
serve a much slower redistribution of the density than for the
Ui = (2 → 4)J evolution in (a). In this case, the density
profile is actually narrower than the ground state profile. The
compressibility presents the same fast evolution at short time,
building “barriers” before the currents can establish and pre-
cluding the redistribution from taking place.

In summary, we performed a detailed study of slow
quenches in the trapped 1D Bose-Hubbard model. We iden-
tified two dynamical regimes. For short ramp times during
which currents cannot develop, the intrinsic local dynamics
dominates and the response is equivalent to that of an homo-
geneous system. Many features of this regime are well de-
scribed by perturbation theory. For longer ramp times, cur-
rents do set in and the dynamics is governed by non-trivial
transport phenomena. For large final interaction strengths, the
global timescales are significantly enhanced by the presence
of “Mott barriers”. Our results agree qualitatively well with
recent experiments focusing on transport dynamics of cold
atoms across the SF–MI transition [6, 8]. Indeed, based on
our results, we can argue that the two experiments were prob-
ably conducted in different regimes. In Ref. 6, the slowdown
of dynamics, due to the presence of Mott regions, indicates
that their experiment was carried out in the regime with global

dynamics. In contrast, the short timescales observed in Ref. 8
are most likely related to local dynamics.

Note added: During the final stages of the preparation of
this manuscript, a mean-field study of the 2D version of the
model appeared on arXiv [21].
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