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We computationally study the transport of active, self-propelled particles suspended in a two-
dimensional chaotic flow. The point-like, spherical particles have their own intrinsic swimming
velocity, which modifies the dynamical system so that the particles can break the transport barriers
present in the carrier flow. Surprisingly, we find that swimming does not necessarily lead to enhanced
particle transport. Small but finite swimming speed can result in reduced transport, as swimmers
get stuck for long times in traps that form near elliptic islands in the background flow. Our results
have implications for models of transport and encounter rates for small marine organisms.
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In a wide range of natural and industrial situations,
fluid flows transport particulate matter. In many cases,
the particles are passive: they have no internal dynam-
ics, and though they may not behave as true fluid el-
ements due to inertial effects [1], their motion is com-
pletely prescribed by the fluid flow. But not all parti-
cles are passively advected; rather, they can be “active,”
obeying equations of motion that include more than just
fluid advection [2]. Particle activity can be biological [3],
chemical [4], or mechanical [5]. In all of these cases, the
dynamics of the particles are very different from their
fluid-element counterparts, and the interaction of the ac-
tive particles and the fluid flow can produce dramatically
complex behavior.

Swimming organisms are one common example of an
active particle. They are ubiquitous in natural flows, and
range from self-motile microorganisms to macroscopic
animals such as fish. For small organisms, a significant
body of research has focused on the detailed propulsion
mechanisms used by the swimmers in their low-Reynolds-
number environment [3, 6, 7] and on the hydrodynamic
interactions that couple different organisms and lead to
pattern formation and macroscopic fluctuations of the
fluid velocity [8–10]. Experiments have confirmed these
effects, and can now describe the flows produced by mi-
croorganisms in detail [11–13]. Larger organisms (such
as krill) may have a significant effect on the flow at high
Reynolds numbers, and it has been suggested that their
activity may produce a non-negligible contribution the
ocean kinetic energy budget [14–16]. Comparatively little
work, however, has been done to understand the effects of
nontrivial flow fields on swimming particles, even though
the coupling between the fluid flow and the particle dy-
namics may lead to qualitatively new behavior. Exam-
ples of such effects include the concentration of swimming
particles in the chaotic regions of an underlying flow [17]
and the spontaneous formation of phytoplankton layers
due to cell tumbling in stratified shear flow [18].

In this Letter, we use a simple numerical model to

(a) (b)

FIG. 1. (color online). Poincare section for (a) fluid particles
and (b) swimmers with an intrinsic speed of vs = 0.05 in
time-dependent flow (B = 0.12, Ω = 6.28). High swimming
velocity allows the swimmers to cross transport barriers that
fluid elements cannot, and thus to explore the entire domain.

study the dynamics of swimming particles in a spatially
nontrivial fluid flow that exhibits Lagrangian chaos. The
particles are advected and rotated by the flow, and, in
addition, they move with an intrinsic swimming velocity
in a direction that depends on the instantaneous particle
orientation. Despite the simplicity of this model (with
only one-way coupling between the particle motion and
the background flow) [17], we observe striking changes to
the particle dynamics when they are self-motile.

Our two-dimensional background fluid flow is com-
posed of a chaotic sea punctuated by elliptic islands;
these islands are bounded by Kolmogorov-Arnold-Moser
(KAM) tori that are impenetrable transport barriers for
fluid elements. As expected, we find that even a small
amount of motility allows the swimmers to cross these
boundaries. Surprisingly, however, we find that swim-
ming does not necessarily lead to uniformly enhanced
transport. Rather, for a range of small but finite swim-
ming speeds, the rate of particle transport can actually
decrease. We connect this reduction of large-scale trans-
port to the formation of “traps” that can hold the swim-
mers for very long times. These traps appear just inside
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FIG. 2. Diffusion coefficient D scaled by D0, the diffusion
coefficient for fluid elements, as a function of swimming speed
vs. Even though the swimmers tend to move faster than fluid
elements, their long-time transport may be slower.

the boundaries of the elliptic islands of the underlying
flow field, and each island has a distinct signature in the
transport statistics. To show that these traps do indeed
control the transport we computed conditional statistics,
recovering the expected result of enhanced transport for
swimmers that are outside of the traps. Our results have
implications for models of encounter rates for small swim-
ming organisms [19].
We advect our swimmers in a two-dimensional oscil-

lating cellular flow given by the streamfunction

ψ(x, y, t) =
U

k
sin[k(x+B sinΩt)] sin ky, (1)

where U is the overall velocity scale, and k is the spatial
wavenumber of the flow; B gives the amplitude of the
lateral oscillation and Ω controls the time scale on which
the flow field changes. This model flow is frequently used
in studies of chaotic mixing [17, 20–23], and can also be
approximated in the laboratory [24, 25]. For fluid ele-
ments, ψ plays the role of a Hamiltonian, with x and
y as a conjugate position-momentum pair. When the
flow is constant in time (B = 0), the dynamical system
is integrable and fluid elements move on closed orbits
within cells. Time dependence (B 6= 0), however, intro-
duces the possibility of chaotic advection [26], as shown
in Fig. 1(a) for B = 0.12 and Ω = 6.28. This parame-
ter choice leads to large period-1 elliptic islands enclosing
the elliptic points of the flow and smaller period-3 islands
surrounding them.
The swimmers themselves are modeled as non-

interacting, pointlike, spherical particles with an intrinsic
velocity vector us. We assume that the magnitude of us

is fixed, though its direction may change. When flow
is imposed, the velocity v of the particle is the vector
sum of the local fluid velocity u and the swimmer’s in-
trinsic velocity, so that v = u + us. Since the particles
are spherical, they do not couple to the flow strain rate.
They may, however, rotate with the flow vorticity, which

allows for reorientation of the intrinsic swimming velocity
vector us. The full equations of motion for the swimmers
are thus [17]

dx

dt
=
∂ψ

∂y
+ vs cos θ,

dy

dt
= −

∂ψ

∂x
+ vs sin θ,

dθ

dt
= −

1

2

(

∂2ψ

∂x2
+
∂2ψ

∂y2

)

, (2)

where we have nondimensionalized the equations with
the characteristic length and velocity scales 1/k and U ,
respectively. We define a nondimensional swimming pa-
rameter as vs = us/U ; θ is the inclination of the swim-
mer velocity with respect to a fixed axis. We note that
are our swimmers are qualitatively different from inertial
particles [1].

Since the swimmer dynamics are no longer Hamilto-
nian, the particles may cross the KAM tori of the under-
lying fluid flow [17], exploring more of the flow domain
than a fluid element can. To illustrate this enhanced
mobility, we show in Fig. 1(b) the trajectory of a single
swimmer with vs = 0.05, stroboscopically sampled at the
frequency of the flow (a Poincare section). The swimmer
is fast enough in this case to be able to explore the whole
space; we find that for vs > 0.065, a swimmer can be
found anywhere with equal probability.

Even though swimming allows a particle to explore
more of the domain, we find that their long-time trans-
port is surprisingly not uniformly enhanced when com-
pared with fluid elements. To illustrate this behavior, we
measured the mean-square displacement as a function
of time for fluid elements and swimmers initially in the
chaotic sea. As expected, this mean-squared displace-
ment scales diffusively [20]; that is, 〈r2〉 = 4Dt, where r
is the displacement of a particle from its initial position,
D is a diffusion coefficient, and 〈·〉 denotes an average
over θ and initial positions in the chaotic sea. In Fig. 2,
we plot the measured diffusion coefficients as a function
of the swimming speed vs. For vs < 0.025, the long-time
transport of the swimmers is not significantly faster than
for fluid elements, and may actually be slower.

To understand this behavior, we studied the spatial
dynamics of the swimmers. As noted above, fluid ele-
ments cannot cross the KAM tori in the underlying flow,
and large regions of the phase space are therefore inac-
cessible to those moving in the chaotic sea. Very fast
swimmers, in contrast, can uniformly explore the whole
domain. Between these limits, however, the particle dy-
namics are markedly different. For vs . 0.03, we find
that the the cores of the elliptic islands of the underlying
flow remain inaccessible for particles that were initially
in the chaotic sea, but that the swimmers can cross the
KAM tori on their periphery. In the newly accessible
regions just inside the elliptic islands, we observe a sur-
prising phenomenon: the swimmers can become stuck for
long times—sometimes thousands of flow cycles. During
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FIG. 3. (color online). Swimmer dynamics inside the traps, for vs = 0.01. (a,b) x and y positions of a single swimmer as
a function of time (measured in flow cycles), assuming periodic boundary conditions. In the black portion of the trace, the
swimmer is stuck in a trap. (c) Poincare section of the swimmer in the black segment of the time trace. (d) Poincare section
of the swimmer for the gray (red online) segment of the trace. (e) Locations of the traps (in white), for vs = 0.01. The white
regions are computed as the difference between the domain accessible to swimmers and that accessible to fluid elements. The
dots show the same data as in panel (c).

these “trapping” events, the swimmer is constrained to
remain inside the elliptic island and moves on an orbit
that may remain bounded for a long time.

To illustrate this phenomenon, we show in Fig. 3 the
time trace of the horizontal and vertical coordinates (as-
suming periodic boundary conditions) of a single swim-
mer with vs = 0.01. These coordinates typically fluc-
tuate rapidly as the swimmer moves chaotically, jump-
ing between periodic cells of the underlying flow. Some-
times, however, the fluctuations decrease markedly, and
the swimmer remains for a long time in a trap.

The existence of “sticky” regions that resemble the
trapping regions observed in our simulations has been
seen before in studies of Hamiltonian chaos, where the
stickiness is associated with phase-space domains that are
dense in elliptic-island chains [27]. Although we do ob-
serve some weak sticking for fluid elements very close to
the elliptic islands, the interpretation of our observations
for swimmers is different. Once swimming is introduced,
the system is no longer Hamiltonian, and the trapping
regions we observe are much larger than the regions that
are sticky for fluid elements. The traps that form in our
system are purely due to the interaction of the intrinsic
swimmer dynamics with the underlying flow field.

Comparing Fig. 3(c) with Fig. 1(a), we see that the
traps indeed form just inside the elliptic islands of the
background flow. To identify the trapping regions in an
automated way (so that we can make statistical mea-
surements), we measured both the set Ωf accessible to
fluid elements and the set Ωs accessible to swimmers for
a given vs. The set Ωt ≡ Ωs−Ωf is then the region newly
accessible for the swimmers. An example of Ωt is shown
in Fig. 3(e). We have also included the data shown in
Fig. 3(c) on this plot; it is clear that the trapped particle
remains in the region Ωt.

To test the hypothesis that it is these traps that lead
to the reduced transport, we measured the diffusion co-
efficients for swimmers while they were outside the traps,
as shown in Fig. 4. To clarify the dynamics further, we
separated Ωt into the traps that form in the large period-
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FIG. 4. (color online) (a) Diffusion coefficient for swimmers
when they are outside of the traps. Data is shown separately
for swimmers that are not in the large period-1 traps and the
smaller period-3 traps. For comparison, the data from Fig. 2
for all the swimmers are also shown. (b-d) Spatially resolved
maps of the mean time for a particle to cross a cell boundary,
for (b) vs = 0 (i.e., fluid elements), (c) 0.002, and (d) 0.01.
Only one quarter of the unit cell of the flow is shown; the rest
are related by symmetry. The color bar shows the time in
flow cycles.

1 islands and those in the smaller period-3 islands. As is
evident from Fig. 4, the addition of intrinsic swimming
does enhance the transport, as long as the swimmers are
outside the traps. The reduced transport we saw in Fig. 2
is due solely to the formation of traps, which, for small
vs, overwhelms the enhancement due to swimming.

Figure 4 also shows that the effect of the two differ-
ent types of traps (the period-1 and period-3 islands) is
not the same: slower swimmers are more affected by the
period-3 traps, while faster swimmers feel the period-1
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FIG. 5. Diffusion coefficients and elliptic islands for other
sets of parameters. (a,b) For B = 0.3, we observe one dip
in the diffusion coefficient as a function of vs, corresponding
to the single, period-1 elliptic island. (c,d) For B = 0.14, we
observe three dips, one for each of the period-1, period-3, and
period-5 islands.

islands more. This behavior is simple to explain. The
transport boundaries surrounding the higher-period is-
lands are weaker, and so the swimmers can enter them for
smaller values of vs. Therefore, even though the period-1
traps are stronger, the period-3 traps are larger for slow
swimmers. For larger vs, however, the period-3 traps are
too weak to constrain the swimmers strongly, but the
swimmers are fast enough to penetrate deeper into the
period-1 traps. We demonstrate this effect in Fig. 4(b-d)
by displaying spatial maps of the mean time a particle
with a given initial position takes to cross a cell bound-
ary. The results show that particles will small swimming
velocity vs are strongly affected by the period-3 islands,
while those with larger vs are only influenced by the
period-1 islands, explaining the non-monotonic behav-
ior seen in Fig. 2. As further confirmation, in Fig. 5, we
show results for other flow parameters: B = 0.3, which
gives only period-1 islands, and B = 0.14, which gives
period-1, 3, and 5 islands. As expected, we find one
minimum of D as a function of vs for each type of is-
land. These results suggest that the effects we see are
quite general and will also be present in more complex
flows, which may have elliptic islands of many different
strengths and sizes and swimmers with many different
swimming speeds: each elliptic island will act as a strong
trap for some swimmers.
In summary, we have studied the interplay of motility

and flow for self-propelled spherical particles advected
by a chaotic flow. As expected, adding swimming en-
hances the overall mixing, in that the swimmers can ex-
plore more of the flow domain than a fluid element can.
We found, however, that adding motility does not uni-

formly enhance particle transport; rather, for small but
finite values of the swimming speed, motile particles can
become stuck on nearly bounded orbits for long times.
These traps form just inside the elliptic islands in the
flow, and lead to weaker chaotic diffusion. In addition
to this reduced transport, our results have implications
for the estimation of encounter rates for swimming or-
ganisms, since swimmers may be more likely to find each
other when they are constrained in a small region for long
times. Finally, our results also show that some character-
istic features of Hamiltonian chaos (such as the existence
of elliptic islands and sticky regions) are approximately
retained even under non-Hamiltonian perturbations.
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