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We study the problem of energy relaxation in a one-dimensional electron system. The leading
thermalization mechanism is due to three-particle collisions. We show that for the case of spinless
electrons in a single channel quantum wire the corresponding collision integral can be transformed
into an exactly solvable problem. The latter is known as the Schrödinger equation for a quantum
particle moving in a Pöschl-Teller potential. The spectrum for the resulting eigenvalue problem
allows for bound state solutions, which can be identified with the zero-modes of the collision integral,
and a continuum of propagating modes, which are separated by a gap from the bound states. The
inverse gap gives the time scale at which counter-propagating electrons thermalize.

PACS numbers: 71.10.Pm, 72.10.-d, 72.15.Lh

Introduction.—Relaxation processes and nonequilib-
rium dynamics in one-dimensional electron systems have
moved into focus of recent theoretical [1–9] and experi-
mental research [10–13]. One essential characteristic of
one-dimensional electrons is the absence of relaxation in
case of a linear energy dispersion relation and a slow
relaxation if dispersion is nonlinear, inhibited by mo-
mentum and energy conservation laws [4, 7]. Based on
momentum-resolved tunneling spectroscopy the peculiar-
ities of relaxation in one-dimesional electron systems have
been observed in recent experiments [10, 12]. Moreover,
the violation of Wiedeman-Franz law observed [15] at the
plateau of the electrical conductance in single channel
quantum wires can be qualitatively understood from the
different relaxation processes required for equilibration of
applied temperature gradients and chemical potentials.

In presence of many transport channels relaxation of
electrons at low temperature is primarily provided by
pair collisions. A solution of the eigenvalue equation of
the two-particle collision integral in two and three dimen-
sions has already been given four decades ago at the early
era of Fermi liquid theory [16]. A remarkable result of
that theory is that the eigenvalue equation turns out to
be exactly solvable. In single channel wires, on the other
hand, conservation laws severely restrict the phase-space
available for scattering processes, and pair collisions do
not provide a relaxation mechanism. If electron den-
sity is not too low then three-particle collisions [5, 17]
constitute the leading order relaxation process. Unlike
the two-particle collision integral in higher dimensional
systems, a spectral analysis of the corresponding three-
particle collision integral in single channel wires so far is
missing. This paper aims to fill this gap. We show that
for specific momentum configurations of the scattering
states, relevant for energy relaxation, the collision inte-
gral of spinless electrons can be diagonalized analytically.
We find that zero modes of the collision integral are sepa-
rated by a gap from a continuum of decaying modes. The

gap value provides us the time-scale at which counter-
propagating electrons, exposed to a small temperature
differences, thermalize.
Formulation of the Problem.—Our motivation is to

identify the time scale τth at which thermalization be-
tween out-of-equilibrium counter-propagating electrons
occurs in a clean single channel quantum wires. We
pursue this goal by studying the spectrum of the three-
particle collision integral under the assumption that left-
and right-moving electrons inside the wire are initially
at distinct equilibria, characterized by different temper-
atures, with ∆T being the temperature-difference.
Within the Boltzmann kinetic equation approach for

the electron distribution function, Ḟ = −I{F}, micro-
scopic details of relaxation process are stored inside the
collision integral I{F}. In the following we specify I{F}
for spinless electrons with quadratic energy dispersion,
interacting via Coulomb potential V (x) [18]. In the high
density limit interactions are weak, e2/~vFκ ≪ 1, here
vF is the Fermi velocity and κ is the dielectric constant
of the host material, and the leading order relaxation
process is due to three-particle collisions:
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Higher order scattering processes are suppressed by the
small interaction strength and phase space. In Eq. (1) we
introduced notations, Fi = F(t, x, pi), and Fh

i = 1−Fi.

The W 1′2′3′

123 = 2π
~
|〈1′2′3′|V̂ Ĝ0V̂ |123〉c|

2δ(Ei − Ef ) is
the rate of three-particle scattering from the incoming
states p1,2,3 into the outgoing states p1′,2′,3′ with en-

ergies Ei(f) =
∑3

i εi(i′), respectively. An explicit form

of W for a generic two-body interaction potential V̂ =
1
2L

∑

k1k2q
Vq ĉ

†
k1+q

ĉ†k2−q ĉk2 ĉk1 , where ĉ
†
k (ĉk) is the elec-

tron creation (annihilation) operator, has been recently
derived in Ref. [5]. We here merely mention that Ĝ0
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denotes the free particle Green’s function, subscript “c”
refers to irreducible scattering processes, L is wire length
and Vq is the Fourier transform of the interaction poten-
tial V (x).
Due to nonlinearity of the collision integral in Eq. (1)

an exact analytical solution of the Boltzmann equation is
very difficult to find. A simplification is possible within
the linear response analysis in which distributions en-
tering Eq. (1) can be linearized around an equilibrium
state, Fp = fp + fpf

h
p ψp. Here fp = [e(εp−εF )/T + 1]−1

is the equilibrium Fermi distribution with εF the Fermi
energy and temperature T , fhp = 1 − fp, and ψp in re-
sponse to the externally applied perturbation, in our case
ψp ∝ (εp−εF )sign(p)∆T . Restricting to the linear re-
sponse regime we insert above distribution into the colli-
sion integral Eq. (1) and arrive at the Boltzmann equa-
tion, ψ̇p1 = −L{ψ}p1 , with the linear collision operator

L{ψ}p1 =
1

f1fh1

∑

p2,p3
p
1′

,p
2′

,p
3′

K{pi};{pi′}

3
∑

i=1

(ψpi −ψpi′ ) . (2)

Here the kernel K{pi};{pi′}
= W 1′2′3′

123 f1f2f3f
h
1′f

h
2′f

h
3′ . A

spectral analysis of the linearized collision operator in
Eq. (2) under the above formulated assumptions is the
problem we address in the following.
Zero-Modes and Symmetries.—Eigenfunctions of the

collision integral with eigenvalue zero (‘zero modes’) cor-
respond to constant in time solutions of the Boltzmann
equation and are associated with the conserved quanti-
ties in the system. Indeed, it is readily checked that L in
Eq. (2) is nullified by ψE = εp (energy-conservation),
ψP = p (momentum-conservation), and ψN = const
(conservation of total particle-number). Since we are in-
terested in thermalization we can further restrict to pro-
cesses in which all of the participating states are close
to the Fermi points. Then the difference in number of
left- and right-moving electrons, ∆N , is also conserved
and ψ∆N = sign(p) is an additional zero mode. We
only briefly mention that three particle collisions chang-
ing ∆N require backscattering and are important for
the relaxation of differences in the chemical potentials
of counter-propagating electrons [7].

Defining the Hilbert space of functions endowed with
scalar product 〈ψp|ψ

′
p〉 = 1

2mT

∫ +∞

−∞
dp fpf

h
p ψpψ

′
p it is

readily checked that L is positive Hermitian, implying
a spectrum of eigenvalues larger or equal to zero. The
zero modes form a basis of the four-dimensional subspace
of conserved quantities. Any ψp that falls off this cate-
gory evolves according to the Boltzmann equation and
eventually relaxes into one of the zero modes or their
linear combination. In general, the collision operator L
may have discrete and continuous parts of the spectrum.
However, only if the zero-modes are separated by a well
defined gap to a smallest non-vanishing eigenvalue the
concept of a relaxation rate is justified.
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FIG. 1: [Color online] Three-particle scattering processes that
allow for the energy exchange between counter-propagating
electrons and thus lead to their thermalization. The matrix
elements 〈1′2′3′|V̂ ĜV̂ |123〉c decompose into six contributions,
A(11′, 22′, 33′) plus five permutations of primed arguments,
corresponding to the direct a) and five exchange terms b)–f).

It is helpful to account for an additional symmetry
of the linearized collision integral. As a consequence of
invariance of the scattering kernel under reversal of mo-
menta, K{pi};{pi′}

= K{−pi};{−pi′}
, L commutes with the

inversion operator Πψp = ψ−p. Therefore, eigenfunctions
of L have well defined parity and the operator itself can
be decomposed into a direct sum L = L+ ⊕ L− of oper-
ators L± acting in the mutually orthogonal subspaces of
even and odd parity functions. (Notice that the Hilbert
space defined above decomposes into a direct sum of even
and odd parity functions, mutually orthogonal to each
other.) As we are interested in the relaxation of an odd
parity perturbation, ψ−p = −ψp, our main focus is on
the spectrum of L−.

Spectrum of the Linearized Collision Integral.—We
start the analysis from identifying small parameters in
the problem. Fermi blocking in combination with con-
servation laws restricts participating scattering states to
momentum strips of order δp ∼ T/vF ≪ pF around the
Fermi points. Denoting qi = pi′ − pi the momentum-
transfer in a collision we thus have the small parameters
|qi/pj| ∼ T/εF ≪ 1, where i, j = 1, 2, 3. The energy is
transferred via the three-particle collision in which one of
the incoming electrons, say with momentum p3, scatters
off two other counter-propagating electrons (see Fig. 1
for the six possible scattering processes where an electron
with p3 < 0 scatters off two right-movers). Using momen-
tum conservation q2 + q1 + q3 = 0 we can express energy
conservation as p2(q1+q3)−(p1q1+q

2
1+p3q3+q1q3+q

2
3) =

0 which, solved for q3, shows that q3 = q1(p1−p2)/2pF +
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O
(

(p1 − p2)
2/p2F , q

2
1/p

2
F

)

. It becomes clear now that
energy transfer between the counter-propagating elec-
trons occurs via small portions of momentum exchange
vF |q3| ∼ T 2/εF , and {|q3/q1|, |q3/q2|} ≪ 1 present addi-
tional small parameters, while q1 ≃ −q2 up to corrections
of O (q2(p1 − p2)/pF )).
A further important ingredient for our calculation is

the three-particle scattering rate for the Coulomb poten-
tial. Expanding W 1′2′3′

123 = Λ1′2′3′

123 δ(Ei − Ef )δq1+q2+q3=0

to leading order in the above small parameters, we
find that the scattering rate depends only logarithmi-
cally on the momenta transfer qi. Indeed, Λ1′2′3′

123 =
2π
~
(2e

2

κ )4[ (kFw)2

2L2εF
]2Γ2(q1, q3), with

Γ(q1, q3) = [1 + 3(γE + ln[kFw])] ln[2pF |q3|/q
2
1 ], (3)

where γE is the Euler constant. This result [Eq. (3)] ap-
plies at not too low temperatures {Td/~vF , kF d} ≫ 1
at which screening of the nearby gate is not impor-
tant. Technically speaking, the typical Fourier compo-
nent Vk of the interaction potential then has wave num-
ber in the range d−1 ≪ |k| ≪ w−1, so that Vk ≃
2e2

κ

[

ln 2e−γE

|k|w + (kw)2

4 ln 2e1−γE

|k|w

]

[18]. The logarithmic qi-

dependence of the scattering rate is a result of subtle
cancelations between direct and various exchange terms
contributing to the scattering amplitude, see also Fig 1.
It is owing to this property ofW that makes an analytical
diagonalization of L possible.
Our strategy is now to split the linearized collision op-

erator into two contributions

L{ψ} = L0{ψ}+ δL{ψ} , (4)

where L0 allows for an analytical diagonalization, while
corrections to the spectrum from δL turn out to be
irrelevant for our problem (and may, in principle, be
calculated from perturbation theory). More precisely,
we choose L0 as in Eq. (2) with kernel K0 resulting from
the original K upon linearization of the quadratic energy
dispersion, i.e. upon substituting fp±pF and δ(Ei −Ef ),
respectively, by g±p ≡ (e±vF p/T+1)−1, and δ0(Ei−Ef) ≡
L

2hvF
[δq1+q2δq3Θ(p1, p2,−p3) + δq2+q3δq1Θ(p1,−p2,−p3)],

Θ(p1, p2,−p3) = [θ(p1)θ(p2)θ(−p3) + θ(−p1)θ(−p2)θ(p3)].
That is the operator L0 corresponds to a problem with
linear dispersion relation. The expectation that correc-
tions to the spectrum from δL are small is, of course,
a consequence of the fact that three-particle scattering
processes which provide energy exchange involve all
colliding electrons near the Fermi points, while states
at the band bottom are not crucial for thermalization.
Since the above approximation preserves inversion
symmetry, [L0,Π] = 0, eigenfunctions of L0 have well
defined parity. Given this property we may restrict
the eigenvalue equation L0{ψ

n}p = ωnψ
n
p to momenta

p > 0 and then extend solutions to negative values
p < 0 by taking even and odd parity combinations
ψp = θ(p)ψnp ± θ(−p)ψn−p.

We next show that L0 can be transformed into a lin-
ear second-order differential equation. As a first step,
we adopt logarithmic accuracy approximation to substi-
tute the argument of the logarithm in the momentum
dependent scattering rate Eq. (3) by its typical value,
q21/(q3pF ) → 1, as dictated by the conservation laws. The
linear collision operator with constant scattering rate can
be reduced then to

L0{ψ}pF+p1 = γ0

[ L

2h

(

κ
2 + p21

)

ψpF+p1

−
1

ghp1

∑

p2

(p2 − p1)g
h
p2bp2−p1 (2ψpF+p2 − ψpF−p2)

]

, (5)

where κ = πT/vF is characteristic momentum due to
thermal smearing of Fermi functions, bp = (evF p/T −1)−1

is the bosonic distribution function, ghp = 1−gp, and γ0=
(LkF )2

h2

TL ln2 2
ε2
F

(2e
2

κ )4[ (kFw)2

2L2εF
]2 ln2[kFw]. The sequence of

exact transformations leading to Eq. (5) can be sum-
marized as follows [18]. (i) It is convenient to orga-

nize L0 into six contributions L0 =
∑

s=±

∑3
j=1 l

s−
j

where ls−j {ψ} = 1
g1gh1

∑

p2p3

∑

p
1′
p
2′
p
3′
Ks−0 [ψj −ψj′ ] and

K+−
0 (K−−

0 ) describes processes in which the right-mover
p1 scatters off one right- and one left-mover (two left-
movers). (ii) In the individual contributions ls−j we re-
move two out of five momentum-integrations employ-
ing conservation laws and complete two further integra-
tions with help of the identities:

∑

p gpg
h
p−q = L

h qbq,
∑

q gp+qg
h
p−q = −L

h pb−p, and
∑

q qgp+qbq = −L
h (κ

2 +

p2)gp. (iii) We find that all terms l−−
j {ψ} and l+−

3 {ψ}

are identical zero, while l+−
1 {ψ}+l+−

2 {ψ} can be summed
to give Eq. (5).
We then introduce odd and even momentum combina-

tions with respect to the Fermi point

ψ±
p =

√

gpghp
[

ψpF+p ± ψpF−p

]

, (6)

where the normalization factor is chosen for convenience,
and recast the eigenvalue problem for odd and even com-
binations, s = ±, as follows

ωnψ
ns
p1=γ0

[

L

2h
(p21 + κ

2)ψnsp1 −
∑

p2

3δs(p2 − p1)ψ
ns
p2

2 sinh vF (p2−p1)
2T

]

, (7)

with δ± = 0, 1, respectively. At this stage we intro-
duce dimensionless momentum k = vF p

πT , energy Ωn =
2h
γ0L

(

πvF
T

)2
ωn, and notice that the kernel in Eq. (7) de-

pends on the difference of its arguments, which makes it
convenient to perform a Fourier transformation ψn±k =
∫

dx
2πψ

n±
x eikx and

∫

keikxdk
sinh(πk/2) = 2

cosh2 x
. As a result, the

eigenvalue equations for the Fourier images ψnsk reduce to
Schrödinger equations of a particle moving in a Pöschl-
Teller potential

[

d2

dx2
+Ωn − 1 +

2 · 3δs

cosh2 x

]

ψnsx = 0, (8)
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which can be solved with help of operator-algebra tech-
nique known from the harmonic oscillator problem [19].
The eigenvalue problem in Eq. (8) allows for one even-

and one odd-parity bound-state Ωn = 0 of the form
ψ0+
x = 1/ coshx and ψ0−

x = −3 sinhx/ cosh2 x, respec-
tively [20]. Upon inverse Fourier transformation and ex-
tension to negative momenta in the above prescribed
manner this gives the four zero-modes ψ0+

N = const,
ψ0−
∆N = sgn(p), ψ0−

P = p, and ψ0+
E = |p|. As already

discussed, the first three functions are consequences of
conservation of total particle number, momentum and
the difference in number of left- and right-moving elec-
trons. The fourth zero mode expresses conservation of
energy for the linearized spectrum. Of course, these four
zero modes could have been directly inferred from L0.
More relevant for our problem is the fact that these

bound state solutions are separated by a gap δΩ = 1
from a continuum of propagating modes and L0, there-
fore, posses a well defined smallest non-vanishing eigen-
value. In order to associate this latter with the ther-
malization rate, we have to make sure that this gap is
also present in the original collision operator L−. Em-
ploying that eigenfunctions of L0 form a complete set we
may express L− in terms of its odd parity subset. Fi-
nally, reminding that ψ∆N and ψP are also nullified by
L−, it is evident that the smallest non-vanishing eigen-
value of L− is of order δω = minψ−

k
{〈ψ−

k |L|ψ
−
k′ 〉}, with

{ψ−
k } the set of eigenstates corresponding to odd par-

ity propagating solutions of Eq. (8). Since matrix ele-
ments |〈ψ−

k |δL|ψ
−
k′ 〉| ≪ |〈ψ−

k |L0|ψ
−
k′〉| it readily follows

that L− and L−
0 share a gap of same order. Employing

then δΩ = 1, restoring original units, and inserting the
explicit form of γ0 we arrive at the thermalization rate

1/τth = c(εF /~)(e
2/~vFκ)

4λ2(kFw)(T/εF )
3 , (9)

where coefficient c = ln2 2/2π6 and function λ(x) =
x2 lnx. Eq. (9) presents the main result of this paper.
We note here that the temperature dependence of τ−1

th

can be understood from a simple phase-space argument
like in Fermi liquid theory. To first approximation the
thermalization rate follows from the out-scattering part
of the collision integral, 1/τout ∝

∑

{pi}
K{pi}, where two

out of the five momenta {pi} are fixed by the conservation
laws, while the remaining three extend over momentum
range set by the temperature broadening δp ∼ T/vF of
the Fermi distributions. Since the scattering amplitude
is only logarithmically dependent on momentum trans-
fer then the scattering rate W ≃ const and, therefore,
1/τout ∝ (T/εF )

3 [21].
Conclusions.— We have analyzed the spectrum of the

three-particle collision integral in a one-dimensional elec-
tron system. We found that zero modes, associated with
the conservation laws, are separated by an energy gap
from a continuum of propagating modes, and identified
the gap with the relaxation rate τth relevant for thermal-

ization of counter-propagating electrons. Our analysis
applies to clean single channel quantum wires of spinless
electrons at not too low densities. It is highly desirable,
yet very challenging, to extend the analysis to lower den-
sities where interactions become strong [14]. Also, in-
clusion of spin [4] presents an interesting problem, since
at very low temperatures effect of spin-charge coupling
becomes relevant [22].
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