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Abstract

The gyrokinetic linearized exact Fokker-Planck collision operator is obtained in a form suitable

for plasma gyrokinetic equations, for arbitrary mass ratio. The linearized Fokker-Planck operator

includes both the test-particle and field-particle contributions, and automatically conserves par-

ticles, momentum, and energy, while ensuring non-negative entropy production. The effects of

finite gyroradius in both field-particle and test-particle terms are evaluated. When implemented

in gyrokinetic simulations, these effects can be pre-computed. The field-particle operator at each

timestep requires the evaluation of a single two-dimensional integral, and is not only more accurate,

but significantly less expensive to evaluate than conserving model operators.

PACS numbers: 52.65.Ff, 52.30.Gz, 52.65.Tt
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Collisions play an important role in plasma turbulence and can strongly influence turbu-

lent transport in magnetic fusion experiments. Within terms of order the inverse Coulomb

Logarithm, large angle Coulomb collisions and long time correlations, which relax on the

short timescale of plasma oscillations, can be neglected [1]. Considering small-angle Coulomb

collisions results in the Fokker-Planck collision operator [1, 2]. The linearized full collision

operator includes the test-particle and field-particle operators, and satisfies Boltzmann’s H-

theorem and the conservation of particles, momentum, and energy [3, 4]. The field-particle

operator, which involves the Rosenbluth potentials of the non-Maxwellian distribution, has

generally been considered intractible. It is often approximated by “conserving” terms that

restore the conservation of low-order moments to the test-particle operator.

In situations involving frequencies much less than the gyrofrequency, where the equi-

librium varies weakly on the gyroradius (Larmor radius) spatial scale, the Fokker-Planck

equation can be averaged over the particle gyration, reducing its dimensionality from six

to five phase space dimensions. When the effects of finite gyroradius are accounted for,

this transformation results in the gyrokinetic equation [5–7]. This equation describes the

low-frequency turbulence driven by gradients of the plasma density, temperature, and flows

across the magnetic field, in magnetically confined laboratory plasmas. However, a gyroki-

netic version of the exact Fokker-Planck collision operator for this equation has not been

developed.

Significant efforts have been made to construct a model gyrokinetic operator which in-

cludes the effect of finite gyroradius [5], and conserves particles, momentum, and energy.

The test-particle terms of this operator, including energy scattering, were implemented in

the gyrokinetic code GS2 [8], and shown to strongly damp short wavelength trapped electron

modes. Most recenty, new conserving terms were formulated to ensure non-negative entropy

production [9, 10]. Upon implementation in the GS2 code [11], this model operator yields a

similar damping of short wavelength entropy modes, in general providing physical dissipa-

tion at short wavelengths. Quantitative accuracy is suggested in comparisons with analytic

theory for the damping of electromagnetic waves by resistivity [11]. However, calculation of

the classical collisional ion heat transport across the magnetic field, using the same model

operator, reveals a ∼ 50% discrepancy [10] relative to the linearized full Fokker-Planck op-

erator. This shows that present model operators still do not have all of the properties of the

full collision operator.
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In this Letter, we present the gyrokinetic linearized full Fokker-Planck collision operator

for arbitrary mass ratio, including both the test-particle and field-particle contributions. The

gyrokinetic operator we obtain accounts for the effects of finite Larmor radius in both the

test-particle and field-particle terms within the usual gyrokinetic ordering. The gyrophase

averages resulting from the field-particle operator are independent of the guiding-center

(gyroaveraged) distribution, and can therefore be pre-computed. Once pre-computed, these

gyro-averages can be efficiently reused in successive timesteps in gyrokinetic simulations.

Further, the field-particle operator at each timestep is reduced to the evaluation of a single

two-dimensional velocity integral over the evolving guiding-center distribution. In contrast,

recent model operators typically require the evaluation of several more complex integrals for

the conserved moments. Thus the exact operator is not only more accurate, but much less

expensive to evaluate than conserving model operators.

For completeness, the linearized full collision operator is first derived in a symmetric

form, utilizing Rosenbluth potentials. This simplifies both the test-particle and field-particle

terms. The Fokker-Planck collision operator gives the time rate of change in the distribution

function fa of species a due to Coulomb collisions with particles of species b [1, 3], (∂fa/∂t)c =
∑

b C(fa, fb). It is often convenient to express the operator in terms of the Rosenbluth

potentials G(v) =
∫

d3v′f ′
bu and H(v) =

∫

d3v′f ′
b/u, where f = f(v), f ′ = f(v′), and

u = |v − v
′| is the relative velocity [2, 12]. Employing the properties of the Rosenbluth

potentials ∇2
vH = −4πfb and ∇2

vG = 2H , the full Fokker-Planck collision operator may be

written in the symmetric form [5, 13]

C(fa, fb)/Γ =
1

2

∂2G

∂vi∂vj

∂2fa

∂vi∂vj

+ 4π
ma

mb

fafb

+ (1 − ma

mb

)
∂H

∂vi

∂fa

∂vi

, (1)

where Γ = 4πZ2
aZ

2
b e

4 ln Λ/m2
a and the sum over repeated indices i and j is understood.

The form Eq. (1) is symmetric in the sense that exchanging the distribution function and

Rosenbluth potentials results in the same differential form. For small departures from ther-

modynamic equilibrium, the distribution functions for all species are nearly Maxwellian,

f = f0 + f1, where f0 = (n/π3/2v3
T ) exp(−v2/v2

T ) is Maxwellian for a species of density n,

the perturbed distribution f1 ≪ f0, and vT =
√

2T/m is the thermal speed. It follows

from Eq. (1) that the linearized full Fokker-Planck collison operator consists sum of the
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test-particle operator [5]

C(fa1, fb0)/Γ =
1

2

∂2G0

∂vi∂vj

∂2fa1

∂vi∂vj
+ 4π

ma

mb
fb0fa1

+ (1 − ma

mb
)
∂H0

∂vi

∂fa1

∂vi
, (2)

and the field-particle operator

C(fa0, fb1)/Γ =
1

2

∂2G1

∂vi∂vj

∂2fa0

∂vi∂vj
+ 4π

ma

mb
fa0fb1

+ (1 − ma

mb
)
∂H1

∂vi

∂fa0

∂vi
, (3)

where the Rosenbluth potentials of Maxwellian distribution G0(v) =
∫

d3v′f ′
b0u and H0(v) =

∫

d3v′f ′
b0/u are isotropic in velocity space; G1(v) =

∫

d3v′f ′
b1u and H1(v) =

∫

d3v′f ′
b1/u

evaluated using the perturbed distribution are in general anisotropic in velocity space.

It is convenient to write the collision operator in terms of spherical velocity variables

v = |v|, pitch angle ξ = v‖/v, and gyrophase φ defined with respect to the magnetic field

B = Bb, where the velocity v = v⊥(ê1 cos φ + ê2 sin φ) + v‖b and v⊥ = v
√

1 − ξ2. Then the

test-particle operator Eq. (2) can be rewritten as the sum of the Lorentz operator (pitch-

angle scattering) [5]

CL(fa1, fb0) =
νD

2

[

∂

∂ξ
(1 − ξ2)

∂

∂ξ
+

1

1 − ξ2

∂2

∂φ2

]

fa1 (4)

and energy scattering

CE(fa1, fb0) = ν‖
v2

2

∂2fa1

∂v2
+ νs(1 − ma

mb
)v

∂fa1

∂v

+ νD v
∂fa1

∂v
+ 4πΓ

ma

mb
fb0fa1 , (5)

where the velocity-dependent collision frequencies νD = (Γ/v3)dG0/dv, ν‖ = (Γ/v2)d2G0/dv2,

νs = (Γ/v)dH0/dv [10]. For a Maxwellian background fb0, these frequencies can be expressed

in terms of error functions and their derivatives [5, 10].

Because of the symmetry in Eq. (1), the differential form of the field-particle operator

is similar to the test-particle operator and the Lorentz operator on G1 can be removed

by employing the property ∇2
vG1 = 2H1. Thus the field-particle operator Eq. (3) can be

rewritten as

C(fa0, fb1)/Γ =
1

2

d2fa0

dv2

∂2G1

∂v2
+

1

2v

dfa0

dv
(2H1 −

∂2G1

∂v2
)

+ (1 − ma

mb
)
∂H1

∂v

dfa0

dv
+ 4π

ma

mb
fa0fb1 . (6)
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For the Maxwellian fa0 with vTa =
√

2Ta/ma, the field-particle operator Eq. (6) becomes

[4, 14]

C(fa0, fb1)/(Γfa0) =
2v2

v4
Ta

∂2G1

∂v2
− 2v

v2
Ta

(1 − ma

mb
)
∂H1

∂v

− 2

v2
Ta

H1 + 4π
ma

mb
fb1 . (7)

The collision operator in the gyrokinetic equation is obtained via the transformation from

guiding-center to particle coordinates, application of the collision operator, and transforma-

tion back to guiding-center coordinates, followed by the average over gyroangle [5, 6, 9].

Thus the gyrokinetic linearized full Fokker-Planck collision operator consists of the gyroki-

netic test-particle operator

Cgk(ha, fb0) = 〈e−iLaC(hae
iLa , fb0)〉 , (8)

and the gyrokinetic field-particle operator

Cgk(fa0, hb) = 〈e−iLaC(fa0, hbe
iLb)〉 , (9)

with the gyrophase average

〈· · ·〉 =
∮

dφ

2π
.

The perturbed guiding-center distribution h is independent of gyroangle φ, Ls = (v × b) ·
k⊥/Ωs and Ωs = ZseB/msc for species s. The binormal basis vector ê1 may be chosen in

the direction of the perpendicular wave number so that k⊥ = kê1. Then Ls = k sin φ v⊥/Ωs

and L′
s = k sin φ′ v′

⊥/Ωs.

It is well known that the gyroaverage of the test-particle operator results in finite gyro-

radius terms that are proportional to k2v2/Ω2 [5, 9, 10]. Inserting the test-particle operator

into the formula Eq. (8), the gyroaverage of the Lorentz operator Eq. (4) yields [9, 10]

Cgk
L (ha, fb0) =

νD

2

∂

∂ξ
(1 − ξ2)

∂

∂ξ
ha

− νD(1 + ξ2)
k2v2

4Ω2
a

ha , (10)

and the gyroaverage of energy scattering Eq. (5) gives

Cgk
E (ha, fb0) = ν‖

v2

2

∂2ha

∂v2
+ νs(1 − ma

mb

)v
∂ha

∂v

+ νD v
∂ha

∂v
+ 4πΓ

ma

mb
fb0ha

− ν‖(1 − ξ2)
k2v2

4Ω2
a

ha , (11)

5



For the calculations of field-particle operator, it is convenient to normalize the velocities

to the thermal speed, i.e., v/vTa → v and the wave number k to the thermal gyroradius

ρa = vTa/Ωa, i.e., kρa → k, then La = Lb/α = kv⊥ sin φ, where α = Ωa/Ωb = Zamb/(maZb).

Inserting the field-particle operator Eq. (7) into the formula Eq. (9), the gyrokinetic field-

particle operator then takes the form

Cgk(fa0, hb)/(Γfa0) = 〈e−iLaP 〉 + 4π
ma

mb
hb〈ei(Lb−La)〉 , (12)

where the normalized quantity

P = 2v2∂2G1

∂v2
− 2H1 − 2(1 − ma

mb
)v

∂H1

∂v
, (13)

the Rosenbluth potentials G1 =
∫

d3v′h′
b exp(iL′

b)u and H1 =
∫

d3v′h′
b exp(iL′

b)/u. The

integral representation of Bessel functions gives

〈ei(Lb−La)〉 = J0[kv⊥(1 − α)] . (14)

Since the guiding-center distribution h′ is independent of gyroangle φ′, we have

〈e−iLaP 〉 = 2π
∫

d2v′h′
b(v

′, ξ′)I(v, ξ, v′, ξ′, k) , (15)

where the normalized gyrophase integral

I(v, ξ, v′, ξ′, k) =
∮

dφ

2π

∮

dφ′

2π
exp(iL′

b − iLa)U , (16)

U = 2v2∂2u

∂v2
− 2

u
− 2(1 − ma

mb
)v

∂

∂v

1

u
, (17)

u = [v2 + v′2 − 2v⊥v′
⊥ cos(φ − φ′) − 2v‖v

′
‖]

1/2. (18)

The velocity derivatives in Eq. (17) can be expressed as 2v2∂2u/∂v2 = (v2 + v′2)/u− u/2−
(v2 − v′2)2/(2u3) and 2v∂(1/u)∂v = −1/u − (v2 − v′2)/u3, so that

U =
(

v2 + v′2 − 1 − ma

mb

)1

u
− u

2
(19)

+
[(

1 − ma

mb

)

(v2 − v′2) − (v2 − v′2)2

2

] 1

u3
.

The effects of finite gyroradius described by I in gyrophase integral Eq. (16) can be

pre-computed independently of the evolving distribution function h′, given the velocity grid
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FIG. 1. (Color online) Typical wave number dependence of gyrophase integral I/I0 for self-

collisions. Here v′ = 1, ξ′ = 0, v = 0.5, ξ = 1 (solid line), ξ = 0.8 (dashed line), ξ = 0.5

(dash-dot line).

(v, ξ, v′, ξ′) and wave number k. Thus the field-particle operator at each timestep in gyroki-

netic simulations is reduced to the evaluation of a single two-dimensional velocity integral,

Eq. (15). Note that the quantity U defined in Eq. (17) depends only on the difference φ−φ′

through the relative velocity u which is periodic and even in φ − φ′. In the limit k = 0, the

gyrophase integral Eq. (16) reduces to

I0 =
∮

dφ′

2π
U(φ′ − φ) . (20)

The relative velocity given by Eq. (18) can be rewritten as u = λ
√

1 − κ2 sin2 θ, where

θ = (π + φ − φ′)/2, λ2 = (v⊥ + v′
⊥)2 + (v‖ − v′

‖)
2, and κ2 = 4v⊥v′

⊥/λ2. Thus I0, the

gyrophase integral evaluated at wave number k = 0, may be expressed in terms of complete

elliptic integrals K and E [1, 15] using the results
∮

dφ′/u = 4K(κ)/λ,
∮

dφ′u = 4λE(κ),
∮

dφ′/u3 = 4E(κ)/[λ3(1 − κ2)].

The periodic function U may be decomposed into a Fourier series

U(φ − φ′) =
∞
∑

n=−∞

cnein(φ−φ′) . (21)

Note that the coefficient c0 for n = 0 is equal to I0. Substituting Eq. (21) into Eq. (16) and

using integral representation of Bessel functions

Jn(kv⊥) =
∮

dφ

2π
exp(ikv⊥ sin φ − inφ) , (22)
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the gyrophase integral Eq. (16) then becomes

I =
∑

n

cnJn(kv⊥)Jn(kv′
⊥α) . (23)

Since the Fourier coefficients cn are real for even functions, the gyrophase integral Eq. (16)

is real and can be rewritten as

I =
∮ dφ

2π

∮ dφ′

2π
cos(kv′

⊥α sin φ′ − kv⊥ sin φ)U . (24)

The gyrophase integral in the form of Eq. (24) can be accurately pre-computed numerically

using an adaptive multi-dimensional integration algorithm [16]. For large kv⊥ and kv′
⊥, the

gyrophase integral can be asymptotically approximated using the saddle point method as

well. For unlike particle collisions such as electron-ion collisions, the collision operators can

be simplified using a large mass ratio mi/me ≫ 1 expansion [2]. However, for like particle

and ion-impurity collisions, the exact operator is necessary.

Figure 1 shows typical wave number dependence of the gyrophase integral I/I0 versus

kρ for self-collisions. Here ρ = vT /Ω is the thermal gyroradius. Since the integrand in the

gyrophase integral becomes oscillatory for large k values, the wave number dependence is

characterized by oscillatory decay and the largest integral value is at k = 0. For v⊥ = 0

or v′
⊥ = 0 the gyrophase integral becomes I/I0 = J0(kv′

⊥) or J0(kv⊥). Thus in Fig. 1 for

the case ξ = 1 with v⊥ = 0 and v′
⊥ = 1, the zeros of gyrophase integral I/I0 = J0(k) occur

at k ≈ 2.4, 5.5, ... the roots of Bessel function of order n = 0, verifying the accuracy of

numerical integrations.

The Debye length λD characterizes charge shielding, and effectively limits the range

of interaction between charges, limiting the maximum impact parameter for small-angle

deflections in the plasma [1]. This excludes the value u = 0 for the case v = v
′ from the

calculation, since the classical distance of closest approach e2/(mu2/2) should be smaller

than the Debye length. If the function U(φ−φ′) is smooth with no jumps, as is the case when

v and v
′ differ significantly, then the Fourier series converges quickly so that the gyrophase

integral may be approximated by a small number of terms in Eq. (23). Thus in Fig. 1 for

the case ξ = 0.8 with v⊥ = 0.3 and v′
⊥ = 1, the gyrophase integral I/I0 ≈ J0(kv⊥)J0(kv′

⊥).

In gyrokinetic simulations, the full expression in Eq. (24) can be readily pre-computed. The

gyrokinetic linearized full Fokker-Planck operator in the normalized form is finally

(∂ha

∂t

)

c
= Cgk

L (ha, fb0) + Cgk
E (ha, fb0) (25)
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+ νa
2√
π

[2ma

mb
hbJ0(kv⊥(1 − Ωa/Ωb))

+
∫

d2v′h′
b(v

′, ξ′)I(v, ξ, v′, ξ′, k)
]

exp(−v2),

where νa = naΓ/v3
Ta and the sum over all species b including b = a is understood.

In summary, the gyrokinetic linearized full Fokker-Planck collision operator for arbitrary

mass ratio has been obtained, including both field-particle and test-particle contributions.

The effects of finite gyroradius are included in both field-particle and test-particle terms.

These effects were obtained via the transformation from guiding-center to particle coor-

dinates, application of the collision operator, and transformation back to guiding-center

coordinates, averaging over gyroangle. The full operator automatically conserves particles,

momentum, and energy, while ensuring positive entropy production. We find that the ef-

fects of finite gyroradius can be pre-computed independently of the evolving distribution

function, leaving a single two-dimensional velocity integral over the evolving distribution

function. Accordingly, this operator is both more accurate and significantly less compu-

tationally expensive than model operators which approximate the field-particle terms with

conserving terms.
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