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The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in
the production of carbon and other elements necessary for life. This excited state of the carbon-12
nucleus was postulated by Hoyle [1] as a necessary ingredient for the fusion of three alpha particles
to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more
than a half century ago [2, 3] nuclear theorists have not yet uncovered the nature of this state from
first principles. In this letter we report the first ab initio calculation of the low-lying states of
carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective
field theory. In addition to the ground state and excited spin-2 state, we find a resonance at
−85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally
observed energy. These lattice simulations provide insight into the structure of this unique state
and new clues as to the amount of fine-tuning needed in nature for the production of carbon in
stars.

PACS numbers: 21.10.Dr, 21.30.-x, 21.45-v, 21.60.De, 26.20.Fj

In stars with central temperatures above 15 × 106 K,
the carbon-nitrogen-oxygen cycle is the dominant process
for the conversion of hydrogen into helium [4, 5]. How-
ever a key catalyst in this cycle is the carbon-12 nucleus
which itself must be produced by fusion of three helium-4
nuclei or alpha particles. Without additional help this
triple alpha reaction is highly suppressed at stellar tem-
peratures and presents a bottleneck shutting down other
process. Fortunately several coincidences prevent this
from happening. The first stage fusing together two
alpha particles is enhanced by the beryllium-8 ground
state, a resonance very near the double alpha thresh-
old. In order to enhance the fusion of the third alpha
particle, Hoyle postulated a new excited state of 12C, a
spinless even-parity resonance very near the 8Be-alpha
threshold [1]. Soon after this prediction, the state was
found at Caltech [2, 3] and has been investigated in lab-
oratories worldwide. Given its role in the formation of
life-essential elements, this state is commonly mentioned
in anthropic arguments explaining the fine-tuning of fun-
damental parameters of the universe [6].

The Hoyle state presents a major challenge for nuclear
theory. There have been recent studies of carbon-12
and the Hoyle state built from clusters of alpha parti-
cles [7–9]. While these empirical models provide qual-
itative insights, investigations of the fundamental prop-
erties of the Hoyle state require calculations from first
principles. One very interesting calculation is based
on fermionic molecular dynamics, but it requires a fit
to properties of a broad range of nuclei to pin down the
various model parameters [9]. In recent years several ab
initio approaches have been used to calculate the bind-
ing, structure, and reactions of atomic nuclei. These in-

clude the no-core shell model [10, 11], constrained-path
Green’s function Monte Carlo [12, 13], auxiliary-field dif-
fusion Monte Carlo [14], and coupled cluster methods
[15]. Despite spectacular progress over the past few
years, there have been no calculations so far which re-
produce the Hoyle state from first principles.

In this letter we report new ab initio calculations of the
low-lying spectrum of carbon-12 using the framework of
chiral effective field theory and Monte Carlo lattice simu-
lations. Effective field theory (EFT) is an organizational
tool which reconstructs the interactions of particles as
a systematic expansion in powers of particle momenta.
Initiated by Weinberg in 1991 [16], chiral EFT provides
a systematic hierarchy of the forces among protons and
neutrons. This approach comes with an estimate of the
theoretical uncertainty at any given order which can be
systematically reduced at higher orders. Over the past
two decades, chiral EFT has proven a reliable and precise
tool to describe the physics of few-nucleon systems. A
recent review can be found in Ref. [17]. The low-energy
expansion of EFT is organized in powers of Q, where
Q denotes the typical momentum of particles. The mo-
mentum scale Q is also roughly the same size as the mass
of the pion times the speed of light. The most impor-
tant contributions come at leading order (LO) or O(Q0).
The next most important terms are at next-to-leading
order (NLO) or O(Q2). The terms just beyond this are
next-to-next-to-leading order (NNLO) or O(Q3). In the
lattice calculations presented here, we consider all pos-
sible interactions up to O(Q3). We also separate out
explicitly the O(Q2) terms which arise from electromag-
netic interactions (EM) and isospin symmetry breaking
(IB) due to mass differences of the up and down quarks.
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Lattice effective field theory combines EFT with nu-
merical lattice methods in order to investigate larger sys-
tems. Space is discretized as a periodic cubic lattice with
spacing a and length L, where L is typically ∼ 10 fm. In
the time direction, the time step is denoted at with total
propagation time Lt. On this spacetime lattice, nucleons
are point-like particles on lattice sites. Interactions due
to the exchange of pions and multi-nucleon operators are
generated using auxiliary fields. Lattice EFT was orig-
inally used to calculate the properties of homogeneous
nuclear and neutron matter [18, 19]. Since then the
ground state energies of atomic nuclei with up to twelve
nucleons have been investigated [20, 21]. A recent review
of the literature can be found in Ref. [22].
In the lattice calculations presented here we use the

low-energy filtering properties of Euclidean time propa-
gation. If H is the Hamiltonian operator for a quantum
system, then the eigenvalues of H are the energy levels
and the eigenvectors of H are the corresponding wave-
functions. For any given quantum state, Ψ, the projec-
tion amplitude ZΨ(t) is defined as the expectation value
〈

e−Ht
〉

Ψ
. For large Euclidean time t, the exponential

operator e−Ht enhances the signal of low-energy states.
The corresponding energies can be determined from the
exponential decay of these projection amplitudes.
In Table I we present lattice results for the ground state

energies of 4He, 8Be, and 12C. The method of calcula-
tion is essentially the same as that described in Ref. [21].
We note that higher-order corrections are computed us-
ing perturbation theory. Some improvements have been
made which eliminate the problem of overbinding found
in Ref. [21]. One significant improvement involves choos-
ing local two-derivative lattice operators at NLO which
prevent interactions tuned at low momenta from becom-
ing too strong at the cutoff momentum. Further de-
tails will be discussed in a forthcoming publication. We
show results at leading order (LO), next-to-leading or-
der (NLO), next-to-leading order with isospin-breaking
and electromagnetic corrections (IB + EM), and next-
to-next-to-leading order (NNLO). We follow the power
counting scheme used in Ref. [21], and there is no addi-
tional isospin-breaking and electromagnetic corrections
at NNLO. All energies are in units of MeV. For com-
parison we also give the experimentally observed ener-
gies. These calculations as well as all other results pre-
sented here use lattice spacing a = 1.97 fm and time step
at = 1.32 fm. To simplify unit conversions we are using
units where ~ and c, the speed of light, are set equal to 1.
The error bars in Table I are one standard deviation esti-
mates which include both Monte Carlo statistical errors
and uncertainties due to extrapolation at large Euclidean
time. For each simulation we have collected data from
2048 processors each generating about 300 independent
lattice configurations. In the case of 12C, these config-
urations are stored on disk and used for the analysis of
excited states described later.

TABLE I: Lattice results for the ground state energies for
4He, 8Be, and 12C. For comparison we also exhibit the ex-
perimentally observed energies. All energies are in units of
MeV.

4He 8Be 12C

LO [O(Q0)] −24.8(2) −60.9(7) −110(2)

NLO [O(Q2)] −24.7(2) −60(2) −93(3)

IB + EM [O(Q2)] −23.8(2) −55(2) −85(3)

NNLO [O(Q3)] −28.4(3) −58(2) −91(3)

Experiment −28.30 −56.50 −92.16

For 4He the periodic cube length is L = 9.9 fm, while
the system size for the 8Be and 12C calculations are each
11.8 fm. By probing the two-nucleon spatial correla-
tions for each nucleus, we conclude that the finite size
corrections are smaller than the combined statistical and
extrapolation error bars. Since the lattice EFT calcu-
lations are based upon an expansion in powers of mo-
mentum, the size of corrections from O(Q0) to O(Q2)
and from O(Q2) to O(Q3) give an estimate of system-
atic errors due to omitted terms at O(Q4) and higher.
We have used the experimentally observed 4He energy
to set one of the unknown three-nucleon interaction co-
efficients at NNLO commonly known in the literature as
cD. However, the results for 8Be and 12C are predictions
without free parameters, and the results at NNLO are in
agreement with experimental values.

In order to compute the low-lying excited states of
carbon-12, we generalize the Euclidean time projection
method to a multi-channel calculation. We apply the
exponential operator e−Ht to 24 single-nucleon standing
waves in the periodic cube. From these standing waves
we build initial states consisting of 6 protons and 6 neu-
trons each and extract four orthogonal energy levels with
the desired quantum properties. All four have even par-
ity and total momentum equal to zero. Three states
have z-axis component of angular momentum, Jz , equal
to 0, and one has Jz equal to 2. We note that the lattice
discretization of space and periodic boundaries reduce
the full rotational group to a cubic subgroup. As a con-
sequence only 90-degree rotations along axes are exact
symmetries. This complicates the identification of spin
states. However the degeneracy or non-degeneracy of
energy levels for Jz = 0 and Jz = 2 allows one to distin-
guish between spinless states and spin-2 states. We use
the spectroscopic notation Jπ

n , where J is the total spin,
π denotes parity, and n labels the excitation starting from
1 for the lowest level. In this notation the ground state
is 0+1 , the Hoyle state is 0+2 , and the lowest spin-2 state
is 2+1 .

In Table II we show results for the low-lying excited
states of 12C at leading order (LO), next-to-leading or-
der (NLO), next-to-leading order with isospin-breaking
and electromagnetic corrections (IB + EM), and next-to-
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TABLE II: Lattice results for the low-lying excited states of
12C. For comparison the experimentally observed energies
are shown. All energies are in units of MeV.

0+2 2+1 , Jz = 0 2+1 , Jz = 2

LO [O(Q0)] −94(2) −92(2) −89(2)

NLO [O(Q2)] −82(3) −87(3) −85(3)

IB + EM [O(Q2)] −74(3) −80(3) −78(3)

NNLO [O(Q3)] −85(3) −88(3) −90(4)

Experiment −84.51 −87.72
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FIG. 1: Extraction of the excited states of 12C from the time
dependence of the projection amplitude at LO. The slope of
the logarithm of Z(t)/Z

0
+
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(t) at large t determines the energy

relative to the ground state.

next-to-leading order (NNLO). All energies are in units
of MeV. For comparison we list the experimentally ob-
served energies. As before the error bars in Table II
are one standard deviation estimates which include both
Monte Carlo statistical errors and uncertainties due to
extrapolation at large Euclidean time. Systematic er-
rors due to omitted higher-order interactions can be esti-
mated from the size of corrections from O(Q0) to O(Q2)
and from O(Q2) to O(Q3). In Fig. 1 we show lattice
results used to extract the excited state energies at lead-
ing order. For each excited state we plot the logarithm
of the ratio of the projection amplitudes, Z(t)/Z

0
+

1

(t),

at leading order. Z
0
+

1

(t) is the ground state projection

amplitude, and the slope of the logarithmic function at
large t gives the energy difference between the ground
state and the excited state.

As seen in Table II and summarized in Fig. 2, the
NNLO results for the Hoyle state and spin-2 state are
in agreement with the experimental values. While the
ground state and spin-2 state have been calculated in
other studies [10, 11, 13], these results are the first ab

initio calculations of the Hoyle state with an energy
close to the phenomenologically important 8Be-alpha
threshold. Experimentally the 8Be-alpha threshold is
at −84.80 MeV, and the lattice determination at NNLO

Experiment
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FIG. 2: Summary of lattice results for the carbon-12 spectrum
and comparison with the experimental values. For each order
in chiral EFT labelled on the left, results are shown for the
ground state (blue circles), Hoyle state (red squares), and the
Jz = 0 (open black circles) and Jz = 2 (filled black circles)
projections of the spin-2 state.

gives −86(2) MeV. We also note the energy level cross-
ing involving the Hoyle state and the spin-2 state. The
Hoyle state is lower in energy at LO but higher at NLO.
One of the main characteristics of the NLO interactions
is to increase the repulsion between nucleons at short
distances. This has the effect of decreasing the bind-
ing strength of the spinless states relative to higher-spin
states. We note the 17 MeV reduction in the ground
state binding energy and 12 MeV reduction for the Hoyle
state while less than half as much binding correction for
the spin-2 state. This degree of freedom in the energy
spectrum suggests that at least some fine-tuning of pa-
rameters is needed to set the Hoyle state energy near
the 8Be-alpha threshold. It would be very interesting
to understand which fundamental parameters in nature
control this fine-tuning. At the most fundamental level
there are only a few such parameters, one of the most
interesting being the masses of the up and down quarks
[23, 24].

Our comments on the binding energies at LO would
also suggest that the nuclear wavefunctions at LO are
probably somewhat too compact for the spinless states.
We check for this explicitly by computing the proton-
proton radial distribution function fpp(r). Using any
given proton as a reference point, the function fpp(r) is
proportional to the probability of finding a second proton
at a distance r. For macroscopic liquids the radial distri-
bution function is normalized to 1 at asymptotically large
distances. In our finite system we instead normalize the
integral of fpp(r) over all space to equal 1− Z−1, where
Z is the total number of protons. In Fig. 3 we show
the radial distribution function fpp(r) at Euclidean time
t = 0.08 MeV−1 for the ground state (A), Hoyle state
(B), and the Jz = 0 (C) and Jz = 2 (D) projections of
the spin-2 state. The yellow bands denote one standard
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FIG. 3: The radial distribution function fpp(r) for the ground
state (A), Hoyle state (B), and in the Jz = 0 (C) and Jz = 2
(D) projections of the spin-2 state. The yellow bands denote
error bars.

deviation error bars.
The ground state is very compact with a large central

core. The Hoyle state and spin-2 state look qualitatively
similar, though the Hoyle state has a slightly larger cen-
tral core. A secondary maximum near r ≃ 4 fm is vis-
ible in the ground state and each of the excited states.
This secondary maximum seems to arise from configu-
rations where three alpha clusters are arranged approx-
imately linearly. More calculations are planned to con-
firm whether this configuration is physically important
or just a lattice artifact.
It is straightforward to compute the root-mean-square

charge radius from the second moment of fpp(r). We
include the charge radius of the proton, 0.84 fm [25], by
adding it in quadrature. At LO we obtain a charge
radius of 2.04(2) fm for the ground state, 2.4(1) fm for
the Hoyle state, and 2.6(1) fm and 2.4(2) fm for Jz = 0
and Jz = 2 projections of the spin-2 state. The exper-
imentally observed charge radius for the ground state is
2.47(2) fm [26]. As expected the ground state wavefunc-
tion at LO is too small by a proportion similar to the
overbinding in energy. The radius for the ground state
and Hoyle state should increase significantly when the
NLO corrections are included. One expects some correc-
tion due to the finite-volume periodic boundary. At LO
the tail of the radial distribution function suggests that
this is a rather small effect for L = 11.8 fm. Higher or-
der corrections to the radial distribution function, charge
radii, as well as electromagnetic transition strengths are
currently under investigation and will be discussed in a
future publication.
In summary we have presented ab initio calculations

of the low-lying states of carbon-12 using lattice effective
field theory. In addition to the ground state and ex-
cited spin-2 state, we find a resonance with spin zero and
positive parity at −85(3) MeV which appears to be the
Hoyle state. Much more work is needed and planned,

including calculations at smaller lattice spacings. But
these lattice calculations provide a new opening towards
understanding the physics of this unique state and may
also prove useful for the study of other nuclear reactions
relevant to the element synthesis in stars.
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A 714, 535 (2003).
[25] R. Pohl, et al., Nature 466, 213 (2010).
[26] F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990).


