
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Thermalization of Strongly Coupled Field Theories
V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B.

Müller, A. Schäfer, M. Shigemori, and W. Staessens
Phys. Rev. Lett. 106, 191601 — Published  9 May 2011

DOI: 10.1103/PhysRevLett.106.191601

http://dx.doi.org/10.1103/PhysRevLett.106.191601


Thermalization of Strongly Coupled Field Theories

V. Balasubramanian,1 A. Bernamonti,2 J. de Boer,3 N. Copland,2 B. Craps,2

E. Keski-Vakkuri,4 B. Müller,5 A. Schäfer,6 M. Shigemori,7 and W. Staessens2
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Using the AdS/CFT correspondence, we probe the scale-dependence of thermalization in strongly
coupled field theories following a sudden injection of energy via saddlepoint calculations of 2-point
functions, Wilson loops and entanglement entropy in d = 2, 3, 4. For homogeneous initial conditions,
the entanglement entropy thermalizes slowest, and sets a timescale for equilibration that saturates
a causality bound. The growth rate of entanglement entropy density is nearly volume-independent
for small volumes, but slows for larger volumes. In this setting, the UV thermalizes first.

It is widely believed that the observed nearly invis-
cid hydrodynamics of relativistic heavy ion collisions at
collider energies is an indication that the matter pro-
duced in these nuclear reactions is strongly coupled [1].
Some such strongly coupled field theories can be studied
using the holographic duality between gravitational the-
ories in asymptotically anti-de Sitter (AdS) spacetimes
and quantum field theories on the boundary of AdS. The
thermal state of the field theory is represented by a black
brane in AdS, and near-equilibrium dynamics is studied
in terms of perturbations of the black hole metric. A key
remaining challenge is to understand the far from equi-
librium process of thermalization. The AdS/CFT corre-
spondence relates the approach to thermal equilibrium in
the boundary theory to black hole formation in the bulk.

Recent works studied the gravitational collapse of en-
ergy injected into AdS5 and the formation of an event
horizon [2]. These works started from locally anisotropic
metric perturbations near the AdS boundary and studied
the rate at which isotropic pressure was established by
examining the evolution of the stress tensor. By studying
gravitational collapse induced by a small scalar perturba-
tion, the authors of [3] concluded that local observables
behaved as if the system thermalized almost instanta-
neously. Here we model the equilibrating field configura-
tion in AdS by an infalling homogeneous thin mass shell
[4, 5] and study how the rate of thermalization varies
with spatial scale and dimension. We consider 2d, 3d and
4d field theories dual to gravity in asymptotically AdS3,
AdS4 and AdS5 space-times, respectively. Our treatment
of 2d field theories is analytic.

Expectation values of local gauge-invariant operators,
including the energy-momentum tensor and its deriva-
tives, provide valuable information about the applica-
bility of viscous hydrodynamics but cannot be used to
explore the scale dependence of deviations from thermal
equilibrium. Equivalently, in the dual gravitational de-
scription these quantities are only sensitive to the metric

close to the AdS boundary. Nonlocal operators, such as
Wilson loops and 2-point correlators of gauge-invariant
operators, probe the thermal nature of the quantum state
on extended spatial scales. In the AdS language, these
probes reach deeper into the bulk space-time, which cor-
responds to probing further into the infrared of the field
theory. They are also relevant to the physics probed
in relativistic heavy ion collisions, e.g. through the jet
quenching parameter q̂ [6] and the color screening length.

A global probe of thermalization is the entanglement
entropy SA [7, 8] of a domain A, measured after subtrac-
tion of its vacuum value. In the strong coupling limit, it
has been proposed that SA for a region A with bound-
ary ∂A in the field theory is proportional to the area of
the minimal surface γ in AdS whose boundary coincides
with ∂A: SA = Area(γ)/4GN , where GN is Newton’s
constant [8]. Thus, for a (d = 2)-dimensional field the-
ory, SA is the length of a geodesic curve in AdS3 (studied
in [9]); for d = 3, SA is the area of a 2d sheet in AdS4

(studied in [10]); and for d = 4, SA is the volume of a
3d region in AdS5. In d = 3 the exponential of the area
of the minimal surface that measures SA also computes
the expectation value of the Wilson loop that bounds the
minimal surface. Wilson loops in d = 4 correspond to 2d
minimal surfaces as well.

First, we consider equal-time 2-point correlators of
gauge invariant operators O of large conformal dimen-
sion ∆. In the dual supergravity theory this correlator
can be expressed, in the semiclassical limit, in terms of
the length L(x, t) of the bulk geodesic curve that con-
nects the endpoints on the boundary: 〈O(x, t)O(0, t)〉 ∼
exp[−∆L(x, t)] [11]. When multiple such geodesics ex-
ist, one has to consider steepest descent contours to de-
termine the contribution from each geodesic.

We consider a d+1-dimensional infalling shell geometry
described in Poincaré coordinates by the Vaidya metric

ds2 =
1

z2
[
−
(
1−m(v)zd

)
dv2 − 2dz dv + dx2

]
, (1)
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FIG. 1: δL̃ − δL̃thermal (L̃ ≡ L/`) as a function of boundary
time t0 for d = 2, 3, 4 (left,right, middle) for a thin shell (v0 =
0.01). The boundary separations are ` = 1, 2, 3, 4 (top to
bottom curve). All quantities are given in units of M . These
numerical results match analytical results for d = 2 as v0 → 0.

where v labels ingoing null trajectories, and we set the
AdS radius to 1. The boundary is at z = 0, where v
coincides with the observer time t. The mass function of
the infalling shell is

m(v) = (M/2) (1 + tanh(v/v0)) , (2)

where v0 determines the thickness of a shell falling along
v = 0. The metric interpolates between vacuum AdS
inside the shell and an AdS black brane geometry with
Hawking temperature T = dM1/d/4π outside the shell.
2-point functions agree with those of a boundary field
theory at thermal equilibrium only if they are dominated
by geodesics that stay outside the shell.

The geodesic length L diverges due to contributions
near the AdS boundary. We introduce an ultraviolet
cut-off z0 and define a renormalized correlator δL =
L+ 2 ln(z0/2) by removing the divergent part of the cor-
relator in the vacuum state (pure AdS). The renormal-
ized equal-time 2-point function is 〈O(x, t)O(0, t)〉ren ∼
exp[−∆ δL(x, t)]. We compute the renormalized correla-
tor as a function of x and t in a state evolving towards
thermal equilibrium and compare it to the corresponding
thermal correlator. In the bulk, this amounts to comput-
ing geodesic lengths in a collapsing shell geometry and
comparing them to geodesic lengths in the black brane
geometry (δLthermal) resulting from the collapse.

We study geodesics with boundary separation ` in
the x direction in AdS3, AdS4 and AdS5 modified by
the infalling shell. The endpoint locations are denoted
as (v, z, x) = (t0, z0,±`/2), where z0 is the UV cut-
off. The lowest point of the geodesic in the bulk is
the midpoint located at (v, z, x) = (v∗, z∗, 0). Geodesics
are obtained by solving differential equations for the
functions v(x) and z(x) with these boundary conditions
and are unique in the infalling shell background. The

length of the geodesics is L(`, t0) = 2
∫ `/2

0
dx z∗ z(x)−2. In

empty AdS, this gives the renormalized geodesic length
δLAdS = 2 ln(`/2).

A numerical solution for the length of geodesics cross-
ing the shell in the d = 2 (AdS3) case was obtained in [9].
We checked that physical results do not depend signifi-
cantly on the shell thickness when v0 is small, and then
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FIG. 2: Thermalization times (τdur, top line; τmax, middle
line; τ1/2, bottom line) as a function of spatial scale for d = 2
(left), d = 3 (middle) and d = 4 (right) for a thin shell (v0 =
0.01). All thermalization time scales are linear in ` for d = 2,
and deviate from linearity for d = 3, 4.

derived an analytical solution in the v0 → 0 limit:

δL(`, t0) = 2 ln

[
sinh(

√
Mt0)√

Ms(`, t0)

]
, (3)

where s(`, t0) ∈ [0, 1] is parametrically defined by:

` =
1√
M

[
2c

sρ
+ ln

(
2(1 + c)ρ2 + 2sρ− c
2(1 + c)ρ2 − 2sρ− c

)]
,

2ρ = coth(
√
Mt0) +

√
coth2(

√
Mt0)− 2c

c+ 1
, (4)

with c =
√

1− s2 and ρ = (
√
Mzc)

−1. Here zc is the
radial location of the intersection between the geodesic
and the shell. For any given `, at sufficiently late times,
the geodesic lies entirely in the black brane background
outside the shell. In this case the length is

δLthermal(`) = 2 ln
[
(1/
√
M) sinh

(√
M`/2

)]
, (5)

representing the result for thermal equilibrium.
We use these analytic relations in d = 2 and find

δL(`, t0) in d = 3, 4 by numerical integration. We mea-
sure the approach to thermal equilibrium by comparing
δL at any given time with the late time thermal result
(see Fig. 1). In any dimension, this compares the loga-
rithm of the 2-point correlator at different spatial scales
with the logarithm of the thermal correlator. For d = 2,
the same quantity measures by how much the entangle-
ment entropy at a given spatial scale differs from the
entropy at thermal equilibrium.

Various thermalization times can be extracted from
Fig. 1. For any spatial scale we can ask for: (a) the time
τdur until full thermalization (measured as the time when
the geodesic between two boundary point just grazes
the infalling shell), (b) the half-thermalization time τ1/2,
which measures the duration for the curves to reach half
of their equilibrium value, (c) the time τmax at which
thermalization proceeds most rapidly, namely the time
for which the curves in Fig. 1 are steepest. These are
plotted in Fig. 2. In d = 2 we can analytically derive the
linear relation τdur ≡ `/2, as also observed in [9].
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FIG. 3: δÃ − δÃthermal (Ã ≡ A/πR2; left and middle pan-

els) and δṼ − δṼthermal (Ṽ ≡ V/(4πR3/3); right panel) as a
function of t0 for radii R = 0.5, 1, 1.5, 2 (top curve to bottom
curve) and mass shell parameters v0 = 0.01, M = 1, in d = 3
(left panel) and d = 4 (middle and right panel) field theories.

The linearity of τdur(`) in 2d is expected from general
arguments in conformal field theory [7], and the coef-
ficient is as small as possible under the constraints of
causality. The thermalization time scales τ1/2 and τmax

for 3d and 4d field theories (Fig. 2, middle and right)
are sublinear in the spatial scale. In the range we study,
the complete thermalization time τdur deviates slightly
from linearity, and is somewhat shorter than `/2. We
will later discuss whether a rigorous causality bound for
thermalization processes exists or not.

In 2d “quantum quenches” where a pure state pre-
pared as the ground state of a Hamiltonian with a mass
gap is followed as it evolves according to a different, crit-
ical Hamiltonian, a nonanalytic feature was found where
thermalization at a spatial scale ` is completed abruptly
at τdur(`) [7, 9]. An analogous feature is evident in Fig. 1
(left) as a sudden change in the slope at τdur, smoothed
out only by the small non-zero thickness of the shell, or
equivalently, by the intrinsic duration of the injection of
energy. We find a similar (higher-order) non-analyticity
for d = 3, 4 (Fig. 1, middle and right) and expect this to
be a general consequence of abrupt injection of energy in
any dimension.

Fig. 2 shows that complete thermalization of the equal-
time correlator is first observed at short length scales,
or large momentum scales (see also [5]). While this be-
havior follows directly in our setup with a shell falling
in from the (“UV”) boundary of AdS, this “top-down”
thermalization contrasts with the behavior of weakly cou-
pled gauge theories even with energy injected in the UV.
In the “bottom-up” scenario [12] applicable to that case,
hard quanta of the gauge field do not equilibrate directly
by randomizing their momenta, but gradually degrade
their energy by radiating soft quanta, which fill up the
thermal phase space and equilibrate by collisions among
themselves. This bottom-up scenario is linked to the
infrared divergence of the splitting functions of gauge
bosons and fermions in perturbative gauge theory. It
contrasts with the “democratic” splitting properties of
excitations in strongly coupled SYM theory that favor
an approximately equal sharing of energy and momen-
tum [13].
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FIG. 4: Thermalization times (τdur, top line; τmax, middle
line; τ1/2, bottom line) as a function of the diameter for cir-
cular Wilson loops in d = 3, 4 (left, middle) and for entangle-
ment entropy of spherical regions in d = 4 (right).

The thermal limit of the Wightman function that we
studied above is a necessary but not a sufficient condi-
tion for complete thermalization. To examine whether
thermalization proceeds similarly for other probes, we
also studied entanglement entropy and spacelike Wilson
loop expectation values in 3d (following [10]) and 4d
field theories. Entanglement entropy in 3d field theories
is holographically related to minimal surfaces in AdS4

and hence to the logarithm of the expectation value of
Wilson loops. We considered circular loops of radius R
in d = 3, 4. The minimal spacelike surface in AdSd+1

whose boundary is this circular loop extends into the
bulk space radially and into the past. The tip occurs at
(v∗, z∗,x = 0). The cross section at fixed z and v is a
circle, and thus the surface is parameterized in terms of
the radii ρ of these circles. The overall shape minimizes
the action for the two functions z(ρ) and v(ρ):

A[R] = 2π

∫ R

0

dρ
ρ

z2

√
1− (1−m(v)zd) v′2 − 2z′v′, (6)

where z′(ρ) = dz/dρ etc. The resulting Euler-Lagrange
equations can be numerically integrated. We regularize
the area by subtracting the divergent piece of the area in
“empty” AdS: δA[R] = A[R]−(R/z0). Entanglement en-
tropy of spherical volumes in d = 4 is similarly computed
in terms of minimal volumes in AdS5 by minimizing an
equation similar to (6) and defining δV [R] by subtracting
the divergent volume in “empty” AdS.

The deficit area δA − δAthermal for Wilson loops in
d = 3, 4 and the deficit volume δV −δVthermal are plotted
in Fig. 3 for several boundary radii R as a function of
the boundary time t0. By subtracting the thermal val-
ues, we can observe the deviation from equilibrium for
each spatial scale at a time t0. Comparing the three
thermalization times defined earlier as a function of the
loop diameter (Fig. 4), we find that for the entanglement
entropy in d = 3, 4, the complete thermalization time
τdur(R) is close to being a straight line with unit slope
over the range of scales that we study (as observed in [10]
for d = 3). On the other hand, for Wilson loops in d = 4,
τdur(R) deviates somewhat from linearity and is shorter
than R.

Our thermalization times for Wilson loop averages and



4

0.5 1. 1.5 2.
0.

0.05

0.1

0.15

0.2

0.25

0.3

{�2 or R

E
n
tr

o
p
y

D
en

si
ty

G
ro

w
th

0 5 10 15 20 25 30
0.

0.05

0.1

0.15

0.2

0.25

0.3

{

E
nt

ro
py

D
en

si
ty

G
ro

w
th

0 5 10 15 20 25 30
0.

0.5

1.

1.5

2.

{

E
nt

ro
py

G
ro

w
th

FIG. 5: (Left) Maximal growth rate of entanglement entropy
density vs. radius of entangled region for d = 2, 3, 4 (top to
bottom). (Middle) Same plot for d = 2, larger range of `.
(Right) Maximal entropy growth rate for d = 2.

entanglement entropy seem remarkably similar to those
for 2-point correlators (after noting that R here is the ra-
dius of the thermalizing region and ` in Fig. 2 is the diam-
eter). Slightly “faster-than-causal” thermalization, pos-
sibly due to the homogeneity of the initial configuration,
seems to occur for the probes that do not correspond to
entanglement entropy in each dimension. For the latter,
the thermalization time is linear in the spatial scale and
saturates the causality bound. As the actual thermal-
ization rate of a system is set by the slowest observable,
our results suggest that in strongly coupled theories with
a gravity dual, thermalization occurs “as fast as possi-
ble” at each scale, subject to the constraint of causality.
Taking the thermal scale ` ∼ ~/T as length scale, this
suggests that for strongly coupled matter τdur ∼ 0.5~/T ,
in particular τdur ∼ 0.3 fm/c at heavy ion collider ener-
gies (T ≈ 300− 400 MeV), comfortably short enough to
account for the experimental observations.

The average growth rate of the coarse grained en-
tropy in nonlinear dynamical systems is measured by the
Kolmogorov-Sinäı (KS) entropy rate hKS [14], which is
given by the sum of all positive Lyapunov exponents.
For a classical SU(2) lattice gauge theory in 4d hKS has
been shown to be proportional to the volume [15]. For
a system starting far from equilibrium, the KS entropy
rate generally describes the rate of growth of the coarse
grained entropy during a period of linear growth after an
initial dephasing period and before the close approach to
equilibrium [16]. Here we observe similar linear growth
of entanglement entropy density in d = 2, 3, 4 (Figs. 1a,
3a, 3c). For small boundary volumes, the growth rate
of entropy density is nearly independent of the bound-
ary volume (almost parallel slopes in Figs. 1a, 3a, 3c
and nearly constant maximal growth rate in Fig. 5a).
Equivalently, the growth rate of the entropy is propor-
tional to the volume – suggesting that entropy growth
is a local phenomenon. However, in d = 2 where our
analytic results enable study of large boundary volumes
`, we find that the growth rate of the entanglement en-
tropy density changes for large `, falling asymptotically
as 1/` (Fig. 5b). Equivalently, the entropy has a growth
rate that approaches a constant limiting value for large `
(Fig. 5c), and thus cannot arise from a local phenomenon.

This behavior suggests that entanglement entropy and
coarse grained entropy have different dynamical proper-
ties.

We have investigated the scale dependence of thermal-
ization following a sudden injection of energy in 2d, 3d,
and 4d strongly coupled field theories with gravity duals.
The entanglement entropy sets a time scale for equilibra-
tion that saturates a causality bound. The relationship
between the entanglement entropy growth rate and the
KS entropy growth rate defined by coarse graining of the
phase space distribution raises interesting questions.
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